Home
Class 12
MATHS
Let S be the set of all x such that x^4-...

Let `S` be the set of all `x` such that `x^4-10 x^2+9lt=0` . The maximum value of `f(x)=x^3-3x\ ` on `S ,` is 16 (b) 17 (c) 18 (d) 19

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to find the maximum value of the function \( f(x) = x^3 - 3x \) on the set \( S \), where \( S \) is defined by the inequality \( x^4 - 10x^2 + 9 \leq 0 \). ### Step 1: Solve the inequality \( x^4 - 10x^2 + 9 \leq 0 \) Let \( y = x^2 \). Then, we can rewrite the inequality as: \[ y^2 - 10y + 9 \leq 0 \] Next, we will factor the quadratic: \[ y^2 - 10y + 9 = (y - 1)(y - 9) \leq 0 \] This implies: \[ (y - 1)(y - 9) \leq 0 \] The roots of the equation \( y^2 - 10y + 9 = 0 \) are \( y = 1 \) and \( y = 9 \). ### Step 2: Determine the intervals for \( y \) The critical points divide the number line into intervals: - \( (-\infty, 1) \) - \( (1, 9) \) - \( (9, \infty) \) We will test a point in each interval to determine where the product is less than or equal to zero. - For \( y < 1 \) (e.g., \( y = 0 \)): \( (0 - 1)(0 - 9) = 9 > 0 \) - For \( 1 < y < 9 \) (e.g., \( y = 5 \)): \( (5 - 1)(5 - 9) = -16 < 0 \) - For \( y > 9 \) (e.g., \( y = 10 \)): \( (10 - 1)(10 - 9) = 9 > 0 \) Thus, the solution to the inequality is: \[ 1 \leq y \leq 9 \] Since \( y = x^2 \), we have: \[ 1 \leq x^2 \leq 9 \] Taking square roots gives: \[ -3 \leq x \leq -1 \quad \text{or} \quad 1 \leq x \leq 3 \] So, the set \( S \) is: \[ S = [-3, -1] \cup [1, 3] \] ### Step 3: Find the maximum value of \( f(x) \) on \( S \) Next, we will evaluate \( f(x) \) at the endpoints and critical points within the intervals of \( S \). 1. **Endpoints of the intervals**: - \( f(-3) = (-3)^3 - 3(-3) = -27 + 9 = -18 \) - \( f(-1) = (-1)^3 - 3(-1) = -1 + 3 = 2 \) - \( f(1) = (1)^3 - 3(1) = 1 - 3 = -2 \) - \( f(3) = (3)^3 - 3(3) = 27 - 9 = 18 \) 2. **Critical points**: We find the derivative: \[ f'(x) = 3x^2 - 3 = 3(x^2 - 1) = 3(x - 1)(x + 1) \] Setting \( f'(x) = 0 \) gives critical points \( x = -1 \) and \( x = 1 \). Both points are already evaluated. ### Step 4: Compare the values Now we compare the values we calculated: - \( f(-3) = -18 \) - \( f(-1) = 2 \) - \( f(1) = -2 \) - \( f(3) = 18 \) The maximum value of \( f(x) \) on the set \( S \) is: \[ \max(-18, 2, -2, 18) = 18 \] ### Conclusion The maximum value of \( f(x) \) on the set \( S \) is \( 18 \).
Promotional Banner

Topper's Solved these Questions

  • DIFFERENTIAL CALCULUS 2

    VMC MODULES ENGLISH|Exercise JEE Main (Archive)|36 Videos
  • DIFFERENTIAL CALCULUS 2

    VMC MODULES ENGLISH|Exercise JEE Advanced (Archive)|81 Videos
  • DIFFERENTIAL CALCULUS 2

    VMC MODULES ENGLISH|Exercise Level -2|69 Videos
  • DIFFERENTIAL CALCULUS

    VMC MODULES ENGLISH|Exercise JEE Advanced (Archive)|75 Videos
  • DIFFERENTIAL EQUATIONS

    VMC MODULES ENGLISH|Exercise JEE ADVANCE (ARCHIVE )|32 Videos

Similar Questions

Explore conceptually related problems

The maximum slope of the curve y=-x^3+3x^2+9x-27 is (a) 0 (b) 12 (c) 16 (d) 32

If x is real, the maximum value of (3x^(2)+9x+17)/(3x^(2)+9x+7) is (a) (17)/(7) (b) (1)/(4) (c) 41 (d) 1

Find the maximum value of f(x)=(40)/(3x^(4)+8x^(3)-18x^(2)+60)

The least and greatest values of f(x)=x^3-6x^2+9x in [0,\ 6] , are 3,\ 4 (b) 0,\ 6 (c) 0,\ 3 (d) 3,\ 6

Let f(x)=cospix+10x+3x^2+x^3,-2lt=xlt=3. The absolute minimum value of f(x) is 0 (b) -15 (c) 3-2pi none of these

If x satisfies the condition f(x)={x:x^2+3 0le11x} then maximum value of function f(x)=3x^3-18x^2+27x-40 is equal to (A) -122 (B) 122 (C) 222 (D) -222

If x satisfies the condition f(x)={x:x^2+3 0le11x} then maximum value of function f(x)=3x^3-18x^2-27x-40 is equal to (A) -122 (B) 122 (C) 222 (D) -222

The maximum value of the function f(x)=3x^(3)-18x^(2)+27x-40 on the set S={x in R: x^(2)+30 le 11x} is:

If 4:3=x^2: 12 , then the value of x\ (x >0)dot (a) 16 (b) 4 (c) 9 (d) 3

The point(s) of minimum of function, f(x)=4x^3-x|x-2|,x in [0,3] is x=0 (b) x=1/3 x=1/2 (d) x=2