Home
Class 12
MATHS
Let f" [1,2] to (-oo,oo) be given by f...

Let `f" [1,2] to (-oo,oo)` be given by `f(x)=(x^(4)+3x^(2)+1)/(x^(2)+1)` then find value of in `[f_(max)]" in "[-1,2]` where [.] is greatest integer function :

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to find the maximum value of the function \( f(x) = \frac{x^4 + 3x^2 + 1}{x^2 + 1} \) in the interval \([-1, 2]\) and then apply the greatest integer function to that maximum value. ### Step 1: Rewrite the function We start with the function: \[ f(x) = \frac{x^4 + 3x^2 + 1}{x^2 + 1} \] We can simplify it: \[ f(x) = \frac{(x^2 + 1)^2 + x^2}{x^2 + 1} = x^2 + 1 + \frac{x^2}{x^2 + 1} \] ### Step 2: Differentiate the function Next, we differentiate \( f(x) \): \[ f'(x) = \frac{d}{dx} \left( x^2 + 1 + \frac{x^2}{x^2 + 1} \right) \] Using the quotient rule for the last term: \[ f'(x) = 2x + \frac{(x^2 + 1)(2x) - x^2(2x)}{(x^2 + 1)^2} \] This simplifies to: \[ f'(x) = 2x + \frac{2x}{x^2 + 1} \] ### Step 3: Set the derivative to zero To find critical points, we set \( f'(x) = 0 \): \[ 2x + \frac{2x}{x^2 + 1} = 0 \] Factoring out \( 2x \): \[ 2x \left( 1 + \frac{1}{x^2 + 1} \right) = 0 \] This gives us \( x = 0 \) as a critical point. ### Step 4: Evaluate the function at critical points and endpoints We need to evaluate \( f(x) \) at \( x = -1, 0, \) and \( 2 \): 1. For \( x = -1 \): \[ f(-1) = \frac{(-1)^4 + 3(-1)^2 + 1}{(-1)^2 + 1} = \frac{1 + 3 + 1}{1 + 1} = \frac{5}{2} = 2.5 \] 2. For \( x = 0 \): \[ f(0) = \frac{0^4 + 3(0)^2 + 1}{0^2 + 1} = \frac{1}{1} = 1 \] 3. For \( x = 2 \): \[ f(2) = \frac{2^4 + 3(2)^2 + 1}{(2)^2 + 1} = \frac{16 + 12 + 1}{4 + 1} = \frac{29}{5} = 5.8 \] ### Step 5: Determine the maximum value Now we compare the values: - \( f(-1) = 2.5 \) - \( f(0) = 1 \) - \( f(2) = 5.8 \) The maximum value in the interval \([-1, 2]\) is \( 5.8 \). ### Step 6: Apply the greatest integer function Finally, we apply the greatest integer function: \[ [f_{\text{max}}] = [5.8] = 5 \] ### Final Answer Thus, the value of \( [f_{\text{max}}] \) in \([-1, 2]\) is \( 5 \). ---
Promotional Banner

Topper's Solved these Questions

  • DIFFERENTIAL CALCULUS 2

    VMC MODULES ENGLISH|Exercise JEE Main (Archive)|36 Videos
  • DIFFERENTIAL CALCULUS 2

    VMC MODULES ENGLISH|Exercise JEE Advanced (Archive)|81 Videos
  • DIFFERENTIAL CALCULUS 2

    VMC MODULES ENGLISH|Exercise Level -2|69 Videos
  • DIFFERENTIAL CALCULUS

    VMC MODULES ENGLISH|Exercise JEE Advanced (Archive)|75 Videos
  • DIFFERENTIAL EQUATIONS

    VMC MODULES ENGLISH|Exercise JEE ADVANCE (ARCHIVE )|32 Videos

Similar Questions

Explore conceptually related problems

Let f(x) = (x[x])/(x^2+1) : (1, 3) rarr R then range of f(x) is (where [ . ] denotes greatest integer function

Let f(x) = (x[x])/(x^2+1) : (1, 3) rarr R then range of f(x) is (where [ . ] denotes greatest integer function)

Let f(x) = [x]^(2) + [x+1] - 3 , where [.] denotes the greatest integer function. Then

Let f:[4,oo)to[4,oo) be defined by f(x)=5^(x^((x-4))) .Then f^(-1)(x) is

If f^2(x)*f((1-x)/(1+x))=x^3, [x!=-1,1 and f(x)!=0], then find |[f(-2)]| (where [] is the greatest integer function).

f(x) = lim_(n->oo) sin^(2n)(pix)+[x+1/2] , where [.] denotes the greatest integer function, is

Let f(x)=sec^(-1)[1+cos^(2)x], where [.] denotes the greatest integer function. Then the

The domain of the function f(x)=1/(sqrt([x]^2-2[x]-8)) is, where [*] denotes greatest integer function

Let f : R rarr[-1,oo] and f(x)= ln([|sin 2 x|+|cos 2 x|]) (where[.] is greatest integer function), then -

Let f:(2,4)->(1,3) where f(x) = x-[x/2] (where [.] denotes the greatest integer function).Then f^-1 (x) is