Home
Class 12
MATHS
Let f,g and h be real-valued functions d...

Let f,g and h be real-valued functions defined on the interval [0,1] by `f(x)=e^(x^(2))+e^(-x^(2)),g(x)=xe^(x^(2))+e^(-x^(2))` and `h(x)=x^(2)e^(x^(2))+e^(-x^(2))` , If a, b and c denote respectively the absolute maximum of f,g and h on [0,1], then

A

a=b and `c ne b`

B

a=c and `a ne b`

C

`a ne b and c ne b`

D

a=b =c

Text Solution

Verified by Experts

The correct Answer is:
D
Promotional Banner

Topper's Solved these Questions

  • DIFFERENTIAL CALCULUS 2

    VMC MODULES ENGLISH|Exercise JEE Main (Archive)|36 Videos
  • DIFFERENTIAL CALCULUS

    VMC MODULES ENGLISH|Exercise JEE Advanced (Archive)|75 Videos
  • DIFFERENTIAL EQUATIONS

    VMC MODULES ENGLISH|Exercise JEE ADVANCE (ARCHIVE )|32 Videos

Similar Questions

Explore conceptually related problems

f: R->R is defined by f(x)=(e^(x^2)-e^(-x^2))/(e^(x^2)+e^(-x^2)) is :

Let f(x)=(e^(x))/(1+x^(2)) and g(x)=f'(x) , then

Consider f, g and h be three real valued function defined on R. Let f(x)=sin3x+cosx,g(x)=cos3x+sinx and h(x)=f^(2)(x)+g^(2)(x). h(x) = 4

Let f(x) be real valued continuous function on R defined as f(x)=x^(2)e^(-|x|) then f(x) is increasing in

Let f be a real valued function defined by f(x)=(e^x-e^(-|x|))/(e^x+e^(|x|)) , then the range of f(x) is: (a)R (b) [0,1] (c) [0,1) (d) [0,1/2)

If f(x)=e^(x) and g(x)=(x)/(2) , then g(f(2))=

Consider f, g and h be three real valued function defined on R. Let f(x)=sin3x+cosx,g(x)=cos3x+sinx and h(x)=f^(2)(x)+g^(2)(x). Then, The length of a longest interval in which the function g=h(x) is increasing, is

Let f (x), g(x) be two real valued functions then the function h(x) =2 max {f(x)-g(x), 0} is equal to :

Consider f, g and h be three real valued function defined on R. Let f(x)=sin3x+cosx,g(x)=cos3x+sinx and h(x)=f^(2)(x)+g^(2)(x). Then, The length of a longest interval in which the function h(x) is increasing, is

int(e^(2x)+2e^x-e^(-x)-1)e^(e^x+e^(-x))dx=g(x)e^(e^x+e^(-x)) , then find g(0) .

VMC MODULES ENGLISH-DIFFERENTIAL CALCULUS 2-JEE Advanced (Archive)
  1. Let f(X) be a polynomila of degree four having extreme values at x =1 ...

    Text Solution

    |

  2. The number of points in (-oo,oo), for which x^2-xsinx-cosx=0, is

    Text Solution

    |

  3. Let f,g and h be real-valued functions defined on the interval [0,1] b...

    Text Solution

    |

  4. The total number of local maxima and local minima of the function f...

    Text Solution

    |

  5. If f(x)=x^2+2b x+2c^2 and g(x)= -x^2-2c x+b^2 are such that min f(x...

    Text Solution

    |

  6. The maximum value of (cos alpha(1))(cos alpha(2))... ( cos alpha(n)) u...

    Text Solution

    |

  7. If f(x)=(x^2-1)/(x^2+1) . For every real number x , then the minimum v...

    Text Solution

    |

  8. If f(x)=a(0)+a(1)x^(2)+a(2)x^(4)+...+ a(n)x^(2n) be a polynomial where...

    Text Solution

    |

  9. The funciton f(X) =2|x|+|x+2|-||x+2|-|x|| has a local mimimum or a lo...

    Text Solution

    |

  10. A rectangular sheet of fixed perimeter with sides having their lengths...

    Text Solution

    |

  11. If f(x) = {{:(e ^(x),,"," 0 le x lt 1 ,, ""), (2- e^(x - 1),,"," 1 lt ...

    Text Solution

    |

  12. f(x) is cubic polynomial with f(x)=18a n df(1)=-1 . Also f(x) has loca...

    Text Solution

    |

  13. The function f(x)=int(-1)^x t(e^t-1)(t-1)(t-2)^3(t-3)^5dt has a local ...

    Text Solution

    |

  14. If f(x) = {{:( 3x ^(2) + 12 x - 1",", - 1 le x le 2), (37- x",", 2 lt...

    Text Solution

    |

  15. If f:R->R is a twice differentiable function such that f''(x) > 0 for ...

    Text Solution

    |

  16. Consider the function f:(-oo, oo) -> (-oo ,oo) defined by f(x) =(x^2...

    Text Solution

    |

  17. Consider the function f:(-oo, oo) -> (-oo ,oo) defined by f(x) =(x^2...

    Text Solution

    |

  18. Consider the function f:(-oo, oo) -> (-oo ,oo) defined by f(x) =(x^2...

    Text Solution

    |

  19. Let f(x) = x+ log(e)x-xlog(e)x,x in (0,oo) List I contains informati...

    Text Solution

    |

  20. Let f(x) = x+ log(e)x-xlog(e)x,x in (0,oo) List I contains informati...

    Text Solution

    |