Home
Class 12
MATHS
Let vecu= hati + hatj , vecv = hati -hat...

Let `vecu= hati + hatj , vecv = hati -hatja and hati -hatj and vecw =hati + 2hatj + 3 hatk` If ` hatn` isa unit vector such that `vecu .hatn=0 and vecn .hatn =0 , " then " |vecw.hatn|` is equal to

A

0

B

1

C

2

D

3

Text Solution

AI Generated Solution

The correct Answer is:
To solve the given problem step by step, we will follow the mathematical operations involving vectors. ### Given: - \(\vec{u} = \hat{i} + \hat{j}\) - \(\vec{v} = \hat{i} - \hat{j}\) - \(\vec{w} = \hat{i} + 2\hat{j} + 3\hat{k}\) ### Step 1: Find the cross product \(\vec{u} \times \vec{v}\) To find the unit vector \(\hat{n}\) that is perpendicular to both \(\vec{u}\) and \(\vec{v}\), we first calculate the cross product \(\vec{u} \times \vec{v}\). \[ \vec{u} \times \vec{v} = \begin{vmatrix} \hat{i} & \hat{j} & \hat{k} \\ 1 & 1 & 0 \\ 1 & -1 & 0 \end{vmatrix} \] Calculating the determinant: \[ = \hat{i}(1 \cdot 0 - 0 \cdot (-1)) - \hat{j}(1 \cdot 0 - 0 \cdot 1) + \hat{k}(1 \cdot (-1) - 1 \cdot 1) \] \[ = \hat{i}(0) - \hat{j}(0) + \hat{k}(-1 - 1) \] \[ = -2\hat{k} \] ### Step 2: Find the unit vector \(\hat{n}\) Now, we can express the unit vector \(\hat{n}\) as: \[ \hat{n} = \frac{\vec{u} \times \vec{v}}{|\vec{u} \times \vec{v}|} \] Calculating the magnitude of \(\vec{u} \times \vec{v}\): \[ |\vec{u} \times \vec{v}| = |-2\hat{k}| = 2 \] Thus, the unit vector \(\hat{n}\) is: \[ \hat{n} = \frac{-2\hat{k}}{2} = -\hat{k} \] ### Step 3: Calculate \(\vec{w} \cdot \hat{n}\) Now we need to find \(|\vec{w} \cdot \hat{n}|\): \[ \vec{w} \cdot \hat{n} = (\hat{i} + 2\hat{j} + 3\hat{k}) \cdot (-\hat{k}) \] Calculating the dot product: \[ = \hat{i} \cdot (-\hat{k}) + 2\hat{j} \cdot (-\hat{k}) + 3\hat{k} \cdot (-\hat{k}) \] \[ = 0 + 0 - 3 = -3 \] ### Step 4: Find the magnitude The magnitude is: \[ |\vec{w} \cdot \hat{n}| = |-3| = 3 \] ### Final Answer Thus, \(|\vec{w} \cdot \hat{n}| = 3\). ---
Promotional Banner

Topper's Solved these Questions

  • VECTORS

    VMC MODULES ENGLISH|Exercise LEVEL -2|47 Videos
  • VECTORS

    VMC MODULES ENGLISH|Exercise Numerical ValueType for JEE Main|15 Videos
  • VECTORS

    VMC MODULES ENGLISH|Exercise JEE ADVANCED (ARCHIVE) (TRUE/ FALSE)|30 Videos
  • TRIGONOMETRIC IDENTITIES AND EQUATIONS

    VMC MODULES ENGLISH|Exercise JEE Advanced (Archive)|11 Videos

Similar Questions

Explore conceptually related problems

Let vecu= hati + hatj , vecv = hati -hatj and vecw =hati + 2hatj + 3 hatk If hatn isa unit vector such that vecu .hatn=0 and vecv .hatn =0 , " then " |vecw.hatn| is equal to

Let vec(U)=hati+hatj,vecV=hati-hatjand vec(W)=3hati+5hatj+3hatk. If hat(n) is a unit vector such that vec(U) . hat(n) =0 and vec(V) . hat(n) =0 , then |vecW.hatn| is equal to

Let vecu=hati+hatj,vecv=hati-hatj and vecw=hati+2hatj+3hatk . If hatn is a unit vector such that vecu.hatn=0 and vecv.hatn=0, |vecw.hatn| is equal to (A) 0 (B) 1 (C) 2 (D) 3

If veca=hati+hatj+hatk, vecb=2hati-hatj+3hatk and vecc=hati-2hatj+hatk find a unit vector parallel to ther vector 2veca-vecb+3c .

Given that vecu = hati + 2hatj + 3hatk , vecv = 2hati + hatk + 4hatk , vecw = hati + 3hatj + 3hatk and (vecu.vecR - 15) hati + (vecc. vecR - 30) hatj + (vecw . vec- 20) veck = vec0 . Then find the greatest integer less than or equal to |vecR| .

Let veca=hati + hatj +hatk,vecb=hati- hatj + hatk and vecc= hati-hatj - hatk be three vectors. A vectors vecv in the plane of veca and vecb , whose projection on vecc is 1/sqrt3 is given by

If a=hati+2hatj+3hatk,b=-hati+2hatj+hatk and c=3hati+hatj , then the unit vector along its resultant is

Consider three vectors vecp=hati+hatj+hatk,vecq=2hati+4hatj-hatk and vecr=hati+hatj+3hatk and let vecs be a unit vector, then vecp,vecq and vecr are

Let vecV = 2hati +hatj - hatk and vecW= hati + 3hatk . if vecU is a unit vector, then the maximum value of the scalar triple product [ vecU vecV vecW] is

Show that the vectors hati-3hatj+2hatk,2hati-4hatj-hatk and 3hati+2hatj-hatk and linearly independent.

VMC MODULES ENGLISH-VECTORS -LEVEL -1
  1. Let vecp = 3ax^(2) hati - 2(x-1)hatj, q=b(x-1)hati + xhatj and ab lt 0...

    Text Solution

    |

  2. Let vecu, vecv and vecw be such that |vecu|=1,|vecv|=2 and |vecw|=3 if...

    Text Solution

    |

  3. Let vecu= hati + hatj , vecv = hati -hatja and hati -hatj and vecw =ha...

    Text Solution

    |

  4. Let veca = hati + hatj + hatk and let vecr be a variable vector such t...

    Text Solution

    |

  5. veca and vecc are unit collinear vectors and |vecb|=6, then vecb-3vecc...

    Text Solution

    |

  6. If vece(1) = ( 1,1,1) and vece(2) = ( 1,1,-1) and veca and vecb are tw...

    Text Solution

    |

  7. The length of the longer diagonal of the parallelogram constructed on ...

    Text Solution

    |

  8. A , B , Ca n dD are any four points in the space, then prove that |...

    Text Solution

    |

  9. Let vec O A= vec a , vec O B=10 vec a+2 vec b ,a n d vec O C=bw h e r...

    Text Solution

    |

  10. ABCDEF is a regular hexagon with centre a the origin such that vec(AB)...

    Text Solution

    |

  11. ABCD a parallelogram, and A1 and B1 are the midpoints of sides BC and ...

    Text Solution

    |

  12. The vertices of a triangle have the position vectors veca,vecb,vecc an...

    Text Solution

    |

  13. If veca , vecb and vecc are three vectors such that vecaxx vecb =vecc...

    Text Solution

    |

  14. Vectors veca,vecb and vecc are of the same length and when taken pair-...

    Text Solution

    |

  15. If three vectors veca, vecb,vecc are such that veca ne 0 and veca xx v...

    Text Solution

    |

  16. veca,vecb,vecc are three non-coplanar vectors such that veca+vecb+vecc...

    Text Solution

    |

  17. If S is the cirucmcentre, G the centroid, O the orthocentre of a trian...

    Text Solution

    |

  18. If veca, vecb, vecc are three non-zero vectors such that veca + vecb +...

    Text Solution

    |

  19. Let alpha,beta and gamma be distinct real numbers. The points with pos...

    Text Solution

    |

  20. If |veca|=4, |vecb|=4 and |vecc|=5 such that veca bot vecb + vecc, vec...

    Text Solution

    |