Home
Class 12
MATHS
veca and vecc are unit collinear vectors...

`veca` and `vecc` are unit collinear vectors and `|vecb|=6`, then `vecb-3vecc = lambda veca`, if `lambda` is:

A

`-9,3`

B

9,3

C

`3,-3`

D

None of these

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem step by step, we will analyze the given information and derive the value of \(\lambda\). ### Step 1: Understand the given information We have two unit collinear vectors \(\vec{a}\) and \(\vec{c}\), which means: - \(|\vec{a}| = 1\) - \(|\vec{c}| = 1\) - The angle between \(\vec{a}\) and \(\vec{c}\) is \(0^\circ\) (since they are collinear). We are also given that \(|\vec{b}| = 6\). ### Step 2: Write the equation from the problem The problem states: \[ \vec{b} - 3\vec{c} = \lambda \vec{a} \] ### Step 3: Rearranging the equation Rearranging the equation gives us: \[ \vec{b} = \lambda \vec{a} + 3\vec{c} \] ### Step 4: Taking the magnitude of both sides Taking the magnitude of both sides, we have: \[ |\vec{b}| = |\lambda \vec{a} + 3\vec{c}| \] Since \(|\vec{b}| = 6\), we can write: \[ 6 = |\lambda \vec{a} + 3\vec{c}| \] ### Step 5: Using the properties of magnitudes Using the formula for the magnitude of the sum of vectors, we can express this as: \[ |\lambda \vec{a} + 3\vec{c}|^2 = |\lambda \vec{a}|^2 + |3\vec{c}|^2 + 2 |\lambda \vec{a}| |3\vec{c}| \cos(0^\circ) \] Since \(|\vec{a}| = 1\) and \(|\vec{c}| = 1\), we have: \[ |\lambda \vec{a}|^2 = \lambda^2 \] \[ |3\vec{c}|^2 = 9 \] Thus, we can rewrite the equation as: \[ 36 = \lambda^2 + 9 + 6\lambda \] ### Step 6: Rearranging the equation Rearranging gives us: \[ \lambda^2 + 6\lambda + 9 - 36 = 0 \] \[ \lambda^2 + 6\lambda - 27 = 0 \] ### Step 7: Solving the quadratic equation Now we can solve the quadratic equation \(\lambda^2 + 6\lambda - 27 = 0\) using the factorization method: \[ \lambda^2 + 9\lambda - 3\lambda - 27 = 0 \] Factoring gives us: \[ (\lambda + 9)(\lambda - 3) = 0 \] ### Step 8: Finding the values of \(\lambda\) Setting each factor to zero gives us: \[ \lambda + 9 = 0 \quad \Rightarrow \quad \lambda = -9 \] \[ \lambda - 3 = 0 \quad \Rightarrow \quad \lambda = 3 \] ### Conclusion Thus, the possible values of \(\lambda\) are \(-9\) and \(3\). The correct option from the choices provided is: **A: \(-9, 3\)**.
Promotional Banner

Topper's Solved these Questions

  • VECTORS

    VMC MODULES ENGLISH|Exercise LEVEL -2|47 Videos
  • VECTORS

    VMC MODULES ENGLISH|Exercise Numerical ValueType for JEE Main|15 Videos
  • VECTORS

    VMC MODULES ENGLISH|Exercise JEE ADVANCED (ARCHIVE) (TRUE/ FALSE)|30 Videos
  • TRIGONOMETRIC IDENTITIES AND EQUATIONS

    VMC MODULES ENGLISH|Exercise JEE Advanced (Archive)|11 Videos

Similar Questions

Explore conceptually related problems

If three vectors veca, vecb,vecc are such that veca ne 0 and veca xx vecb = 2(veca xx vecc),|veca|=|vecc|=1, |vecb|=4 and the angle between vecb and vecc is cos^(-1)(1//4) , then vecb-2vecc= lambda veca where lambda is equal to:

veca and vecc are unit vectors and |vecb|=4 the angle between veca and vecc is cos ^(-1)(1//4) and vecb - 2vecc=lambdaveca the value of lambda is

veca and vecc are unit vectors and |vecb|=4 the angle between veca and vecb is cos ^(-1)(1//4) and vecb - 2vecc=lambdaveca the value of lambda is

If veca, vecb and vecc are unit coplanar vectors, then [(2veca-3vecb,7vecb-9vecc,12vecc-23veca)]

If veca and vecb are two unit vectors perpenicualar to each other and vecc= lambda_(1)veca+ lambda_2 vecb+ lambda_(3)(vecaxx vecb), then which of the following is (are) true ?

Let veca , vecb and vecc be three non-zero vectors such that veca + vecb + vecc = vec0 and lambda vecb xx veca + vecbxxvecc + vecc xx veca = vec0 then find the value of lambda .

If veca , vecb , vecc are non-coplanar vectors and lambda is a real number then [ lambda(veca+vecb) lambda^2vecb lambdavecc ] = [ veca vecb+vecc vecb ] for:

If veca and vecb be two non collinear vectors such that veca=vecc+vecd , where vecc is parallel to vecb and vecd is perpendicular to vecb obtain expression for vecc and vecd in terms of veca and vecb as: vecd= veca- ((veca.vecb)vecb)/b^2,vecc= ((veca.vecb)vecb)/b^2

If veca, vecb, vecc are unit vectors such that veca. vecb=0, (veca-vecc).(vecb+vecc)=0 and vecc=lambdaveca+muvecb+omega(veca xx vecb) , where lambda, mu, omega are scalars, then

If veca, vecb, vecc are unit vectors such that veca. vecb=0, (veca-vecc).(vecb+vecc)=0 and vecc=lambdaveca+muvecb+omega(veca xx vecb) , where lambda, mu, omega are scalars, then

VMC MODULES ENGLISH-VECTORS -LEVEL -1
  1. Let vecu= hati + hatj , vecv = hati -hatja and hati -hatj and vecw =ha...

    Text Solution

    |

  2. Let veca = hati + hatj + hatk and let vecr be a variable vector such t...

    Text Solution

    |

  3. veca and vecc are unit collinear vectors and |vecb|=6, then vecb-3vecc...

    Text Solution

    |

  4. If vece(1) = ( 1,1,1) and vece(2) = ( 1,1,-1) and veca and vecb are tw...

    Text Solution

    |

  5. The length of the longer diagonal of the parallelogram constructed on ...

    Text Solution

    |

  6. A , B , Ca n dD are any four points in the space, then prove that |...

    Text Solution

    |

  7. Let vec O A= vec a , vec O B=10 vec a+2 vec b ,a n d vec O C=bw h e r...

    Text Solution

    |

  8. ABCDEF is a regular hexagon with centre a the origin such that vec(AB)...

    Text Solution

    |

  9. ABCD a parallelogram, and A1 and B1 are the midpoints of sides BC and ...

    Text Solution

    |

  10. The vertices of a triangle have the position vectors veca,vecb,vecc an...

    Text Solution

    |

  11. If veca , vecb and vecc are three vectors such that vecaxx vecb =vecc...

    Text Solution

    |

  12. Vectors veca,vecb and vecc are of the same length and when taken pair-...

    Text Solution

    |

  13. If three vectors veca, vecb,vecc are such that veca ne 0 and veca xx v...

    Text Solution

    |

  14. veca,vecb,vecc are three non-coplanar vectors such that veca+vecb+vecc...

    Text Solution

    |

  15. If S is the cirucmcentre, G the centroid, O the orthocentre of a trian...

    Text Solution

    |

  16. If veca, vecb, vecc are three non-zero vectors such that veca + vecb +...

    Text Solution

    |

  17. Let alpha,beta and gamma be distinct real numbers. The points with pos...

    Text Solution

    |

  18. If |veca|=4, |vecb|=4 and |vecc|=5 such that veca bot vecb + vecc, vec...

    Text Solution

    |

  19. If vecu=veca-vecb, vecv=veca+vecb and |veca|=|vecb|=2, then |vecuxxvec...

    Text Solution

    |

  20. If the vectors vecc, \ veca=xhati+yhatj+zhatk and vecb=hatj are such ...

    Text Solution

    |