Home
Class 12
MATHS
If vece(1) = ( 1,1,1) and vece(2) = ( 1,...

If` vece_(1) = ( 1,1,1) and vece_(2) = ( 1,1,-1) and veca and vecb` are two vectors that ` vece_(1) = 2veca +vecb and vece_(2) veca + 2vecb` then angle between `veca and vecb` is

A

`cos^(-1)(7/9)`

B

`cos^(-1)(-7/11)`

C

`cos^(-1)(-7/9)`

D

`cos^(-1)(6sqrt(2))/11`

Text Solution

AI Generated Solution

The correct Answer is:
To find the angle between the vectors \( \vec{a} \) and \( \vec{b} \) given the equations involving vectors \( \vec{e_1} \) and \( \vec{e_2} \), we can follow these steps: ### Step 1: Write down the given vectors We have: \[ \vec{e_1} = (1, 1, 1) \quad \text{and} \quad \vec{e_2} = (1, 1, -1) \] ### Step 2: Set up the equations based on the problem statement From the problem, we know: \[ \vec{e_1} = 2\vec{a} + \vec{b} \quad \text{(1)} \] \[ \vec{e_2} = \vec{a} + 2\vec{b} \quad \text{(2)} \] ### Step 3: Substitute the values of \( \vec{e_1} \) and \( \vec{e_2} \) Substituting the values of \( \vec{e_1} \) and \( \vec{e_2} \) into equations (1) and (2): From equation (1): \[ (1, 1, 1) = 2\vec{a} + \vec{b} \] From equation (2): \[ (1, 1, -1) = \vec{a} + 2\vec{b} \] ### Step 4: Express \( \vec{b} \) in terms of \( \vec{a} \) From equation (1), we can express \( \vec{b} \): \[ \vec{b} = (1, 1, 1) - 2\vec{a} \quad \text{(3)} \] ### Step 5: Substitute \( \vec{b} \) into equation (2) Now, substitute equation (3) into equation (2): \[ (1, 1, -1) = \vec{a} + 2((1, 1, 1) - 2\vec{a}) \] Expanding this gives: \[ (1, 1, -1) = \vec{a} + 2(1, 1, 1) - 4\vec{a} \] \[ (1, 1, -1) = (2, 2, 2) - 3\vec{a} \] ### Step 6: Rearranging to find \( \vec{a} \) Rearranging gives: \[ 3\vec{a} = (2, 2, 2) - (1, 1, -1) \] \[ 3\vec{a} = (1, 1, 3) \] \[ \vec{a} = \left(\frac{1}{3}, \frac{1}{3}, 1\right) \] ### Step 7: Substitute \( \vec{a} \) back to find \( \vec{b} \) Now substitute \( \vec{a} \) back into equation (3) to find \( \vec{b} \): \[ \vec{b} = (1, 1, 1) - 2\left(\frac{1}{3}, \frac{1}{3}, 1\right) \] \[ \vec{b} = (1, 1, 1) - \left(\frac{2}{3}, \frac{2}{3}, 2\right) \] \[ \vec{b} = \left(1 - \frac{2}{3}, 1 - \frac{2}{3}, 1 - 2\right) = \left(\frac{1}{3}, \frac{1}{3}, -1\right) \] ### Step 8: Find the angle between \( \vec{a} \) and \( \vec{b} \) Now we can find the angle \( \theta \) between \( \vec{a} \) and \( \vec{b} \) using the dot product formula: \[ \cos \theta = \frac{\vec{a} \cdot \vec{b}}{|\vec{a}| |\vec{b}|} \] ### Step 9: Calculate the dot product \( \vec{a} \cdot \vec{b} \) Calculating the dot product: \[ \vec{a} \cdot \vec{b} = \left(\frac{1}{3}, \frac{1}{3}, 1\right) \cdot \left(\frac{1}{3}, \frac{1}{3}, -1\right) = \frac{1}{3} \cdot \frac{1}{3} + \frac{1}{3} \cdot \frac{1}{3} + 1 \cdot (-1) \] \[ = \frac{1}{9} + \frac{1}{9} - 1 = \frac{2}{9} - 1 = \frac{2}{9} - \frac{9}{9} = -\frac{7}{9} \] ### Step 10: Calculate the magnitudes \( |\vec{a}| \) and \( |\vec{b}| \) Calculating the magnitudes: \[ |\vec{a}| = \sqrt{\left(\frac{1}{3}\right)^2 + \left(\frac{1}{3}\right)^2 + 1^2} = \sqrt{\frac{1}{9} + \frac{1}{9} + 1} = \sqrt{\frac{2}{9} + 1} = \sqrt{\frac{11}{9}} = \frac{\sqrt{11}}{3} \] \[ |\vec{b}| = \sqrt{\left(\frac{1}{3}\right)^2 + \left(\frac{1}{3}\right)^2 + (-1)^2} = \sqrt{\frac{1}{9} + \frac{1}{9} + 1} = \sqrt{\frac{2}{9} + 1} = \sqrt{\frac{11}{9}} = \frac{\sqrt{11}}{3} \] ### Step 11: Substitute into the cosine formula Substituting into the cosine formula: \[ \cos \theta = \frac{-\frac{7}{9}}{\left(\frac{\sqrt{11}}{3}\right) \left(\frac{\sqrt{11}}{3}\right)} = \frac{-\frac{7}{9}}{\frac{11}{9}} = -\frac{7}{11} \] ### Step 12: Find the angle \( \theta \) Finally, we find \( \theta \): \[ \theta = \cos^{-1}\left(-\frac{7}{11}\right) \] ### Final Answer The angle between vectors \( \vec{a} \) and \( \vec{b} \) is: \[ \theta = \cos^{-1}\left(-\frac{7}{11}\right) \]
Promotional Banner

Topper's Solved these Questions

  • VECTORS

    VMC MODULES ENGLISH|Exercise LEVEL -2|47 Videos
  • VECTORS

    VMC MODULES ENGLISH|Exercise Numerical ValueType for JEE Main|15 Videos
  • VECTORS

    VMC MODULES ENGLISH|Exercise JEE ADVANCED (ARCHIVE) (TRUE/ FALSE)|30 Videos
  • TRIGONOMETRIC IDENTITIES AND EQUATIONS

    VMC MODULES ENGLISH|Exercise JEE Advanced (Archive)|11 Videos

Similar Questions

Explore conceptually related problems

If veca and vecb are unit vectors such that (veca +vecb). (2veca + 3vecb)xx(3veca - 2vecb)=vec0 then angle between veca and vecb is

If |veca - vecb|=|veca| =|vecb|=1 , then the angle between veca and vecb , is

If veca,vecb are two unit vectors such that |veca + vecb| = 2sqrt3 and |veca -vecb|=6 then the angle between veca and vecb , is

Let veca and vecb are two vectors inclined at an angle of 60^(@) , If |veca|=|vecb|=2 ,the the angle between veca and veca + vecb is

veca and vecb are two vectors such that |veca|=1 ,|vecb|=4 and veca. Vecb =2 . If vecc = (2vecaxx vecb) - 3vecb then find angle between vecb and vecc .

If veca and vecb are two unit vectors such that veca+2vecb and 5veca-4vecb are perpendicular to each other, then the angle between veca and vecb is

If veca and vecb be two non-collinear unit vectors such that vecaxx(vecaxxvecb)=-1/2vecb ,then find the angle between veca and vecb .

If veca and vecb are unequal unit vectors such that (veca - vecb) xx[ (vecb + veca) xx (2 veca + vecb)] = veca+vecb then angle theta " between " veca and vecb is

If veca and vecb are non - zero vectors such that |veca + vecb| = |veca - 2vecb| then

If (|veca+vecb|)/(|veca-vecb|)=1 , then angle between bar(a)" and "bar(b) is :-

VMC MODULES ENGLISH-VECTORS -LEVEL -1
  1. Let veca = hati + hatj + hatk and let vecr be a variable vector such t...

    Text Solution

    |

  2. veca and vecc are unit collinear vectors and |vecb|=6, then vecb-3vecc...

    Text Solution

    |

  3. If vece(1) = ( 1,1,1) and vece(2) = ( 1,1,-1) and veca and vecb are tw...

    Text Solution

    |

  4. The length of the longer diagonal of the parallelogram constructed on ...

    Text Solution

    |

  5. A , B , Ca n dD are any four points in the space, then prove that |...

    Text Solution

    |

  6. Let vec O A= vec a , vec O B=10 vec a+2 vec b ,a n d vec O C=bw h e r...

    Text Solution

    |

  7. ABCDEF is a regular hexagon with centre a the origin such that vec(AB)...

    Text Solution

    |

  8. ABCD a parallelogram, and A1 and B1 are the midpoints of sides BC and ...

    Text Solution

    |

  9. The vertices of a triangle have the position vectors veca,vecb,vecc an...

    Text Solution

    |

  10. If veca , vecb and vecc are three vectors such that vecaxx vecb =vecc...

    Text Solution

    |

  11. Vectors veca,vecb and vecc are of the same length and when taken pair-...

    Text Solution

    |

  12. If three vectors veca, vecb,vecc are such that veca ne 0 and veca xx v...

    Text Solution

    |

  13. veca,vecb,vecc are three non-coplanar vectors such that veca+vecb+vecc...

    Text Solution

    |

  14. If S is the cirucmcentre, G the centroid, O the orthocentre of a trian...

    Text Solution

    |

  15. If veca, vecb, vecc are three non-zero vectors such that veca + vecb +...

    Text Solution

    |

  16. Let alpha,beta and gamma be distinct real numbers. The points with pos...

    Text Solution

    |

  17. If |veca|=4, |vecb|=4 and |vecc|=5 such that veca bot vecb + vecc, vec...

    Text Solution

    |

  18. If vecu=veca-vecb, vecv=veca+vecb and |veca|=|vecb|=2, then |vecuxxvec...

    Text Solution

    |

  19. If the vectors vecc, \ veca=xhati+yhatj+zhatk and vecb=hatj are such ...

    Text Solution

    |

  20. Given any vector, vecr,|vecr xx hati|^(2) + |vecr xx hatj|^(2) + |vecr...

    Text Solution

    |