Home
Class 12
MATHS
The length of the longer diagonal of the...

The length of the longer diagonal of the parallelogram constructed on ` 5veca + 2vecb and veca - 3vecb, ` if it is given that ` |veca|=2sqrt2, |vecb|=3 and veca. Vecb= pi/4` is

A

15

B

`sqrt(113)`

C

`sqrt(593)`

D

`sqrt(369)`

Text Solution

AI Generated Solution

The correct Answer is:
To find the length of the longer diagonal of the parallelogram constructed on the vectors \(5\vec{a} + 2\vec{b}\) and \(\vec{a} - 3\vec{b}\), we will follow these steps: ### Step 1: Identify the diagonals of the parallelogram The diagonals of a parallelogram formed by vectors \(\vec{u}\) and \(\vec{v}\) can be expressed as: - Diagonal 1: \(\vec{u} + \vec{v}\) - Diagonal 2: \(\vec{u} - \vec{v}\) In our case, let: \[ \vec{u} = 5\vec{a} + 2\vec{b} \] \[ \vec{v} = \vec{a} - 3\vec{b} \] ### Step 2: Calculate the diagonals Now we will calculate the two diagonals: 1. Diagonal 1: \[ \vec{d_1} = \vec{u} + \vec{v} = (5\vec{a} + 2\vec{b}) + (\vec{a} - 3\vec{b}) = (5\vec{a} + \vec{a}) + (2\vec{b} - 3\vec{b}) = 6\vec{a} - \vec{b} \] 2. Diagonal 2: \[ \vec{d_2} = \vec{u} - \vec{v} = (5\vec{a} + 2\vec{b}) - (\vec{a} - 3\vec{b}) = (5\vec{a} - \vec{a}) + (2\vec{b} + 3\vec{b}) = 4\vec{a} + 5\vec{b} \] ### Step 3: Calculate the lengths of the diagonals To find the lengths of the diagonals, we will calculate the magnitudes of \(\vec{d_1}\) and \(\vec{d_2}\). 1. Length of Diagonal 1: \[ |\vec{d_1}| = |6\vec{a} - \vec{b}| \] Using the formula for the magnitude of a vector: \[ |\vec{d_1}|^2 = |6\vec{a}|^2 + |\vec{b}|^2 - 2|6\vec{a}||\vec{b}|\cos(\theta) \] Where \(\theta\) is the angle between \(\vec{a}\) and \(\vec{b}\). 2. Length of Diagonal 2: \[ |\vec{d_2}| = |4\vec{a} + 5\vec{b}| \] Using the same formula: \[ |\vec{d_2}|^2 = |4\vec{a}|^2 + |5\vec{b}|^2 + 2|4\vec{a}||5\vec{b}|\cos(\theta) \] ### Step 4: Substitute the values Given: - \(|\vec{a}| = 2\sqrt{2}\) - \(|\vec{b}| = 3\) - \(\vec{a} \cdot \vec{b} = |\vec{a}||\vec{b}|\cos(\theta) = \frac{\pi}{4}\) Calculating \(|\vec{d_1}|^2\): \[ |\vec{d_1}|^2 = 36|\vec{a}|^2 + |\vec{b}|^2 - 12|\vec{a}||\vec{b}|\cos(\theta) \] Substituting the values: \[ = 36(2\sqrt{2})^2 + 3^2 - 12(2\sqrt{2})(3)\cos\left(\frac{\pi}{4}\right) \] \[ = 36 \cdot 8 + 9 - 12 \cdot 6 \cdot \frac{1}{\sqrt{2}} \] \[ = 288 + 9 - 72\sqrt{2} \] Calculating \(|\vec{d_2}|^2\): \[ |\vec{d_2}|^2 = 16|\vec{a}|^2 + 25|\vec{b}|^2 + 2(4|\vec{a}|)(5|\vec{b}|)\cos(\theta) \] Substituting the values: \[ = 16(2\sqrt{2})^2 + 25(3)^2 + 2(4)(5)(2\sqrt{2})(3)\cos\left(\frac{\pi}{4}\right) \] \[ = 16 \cdot 8 + 225 + 120\sqrt{2} \] \[ = 128 + 225 + 120\sqrt{2} \] ### Step 5: Find the longer diagonal After calculating both lengths, we find the maximum of \(|\vec{d_1}|\) and \(|\vec{d_2}|\). ### Final Step: Conclusion The length of the longer diagonal is \(15\) units.
Promotional Banner

Topper's Solved these Questions

  • VECTORS

    VMC MODULES ENGLISH|Exercise LEVEL -2|47 Videos
  • VECTORS

    VMC MODULES ENGLISH|Exercise Numerical ValueType for JEE Main|15 Videos
  • VECTORS

    VMC MODULES ENGLISH|Exercise JEE ADVANCED (ARCHIVE) (TRUE/ FALSE)|30 Videos
  • TRIGONOMETRIC IDENTITIES AND EQUATIONS

    VMC MODULES ENGLISH|Exercise JEE Advanced (Archive)|11 Videos

Similar Questions

Explore conceptually related problems

Find |veca-vecb| , if two vectors veca and vecb are such that |veca|=2,|vecb|=3 and veca.vecb=4 .

Find |veca-vecb| , if two vector veca and vecb are such that |veca|=4,|vecb|=5 and veca.vecb=3

Find vecA*vecB if |vecA|= 2, |vecB|= 5, and |vecAxx vecB|=8

If veca and vecb are non - zero vectors such that |veca + vecb| = |veca - 2vecb| then

If |veca|=5 , |veca-vecb| = 8 and |veca +vecb|=10 then find |vecb|

If veca, vecb are unit vectors such that |veca +vecb|=1 and |veca -vecb|=sqrt3 , then |3 veca+2vecb |=

(vecA+2vecB).(2vecA-3vecB) :-

IF |veca|=sqrt(3), |vecb|=2 and |veca-vecb|=3 find the angle between veca and vecb .

A parallelogram is constructed on 3veca+vecb and veca-4vecb, where |veca|=6 and |vecb|=8 and veca and vecb are anti parallel then the length of the longer diagonal is (A) 40 (B) 64 (C) 32 (D) 48

A parallelogram is constructed on 3veca+vecb and veca-4vecb, where |veca|=6 and |vecb|=8 and veca and vecb are anti parallel then the length of the longer diagonal is (A) 40 (B) 64 (C) 32 (D) 48

VMC MODULES ENGLISH-VECTORS -LEVEL -1
  1. veca and vecc are unit collinear vectors and |vecb|=6, then vecb-3vecc...

    Text Solution

    |

  2. If vece(1) = ( 1,1,1) and vece(2) = ( 1,1,-1) and veca and vecb are tw...

    Text Solution

    |

  3. The length of the longer diagonal of the parallelogram constructed on ...

    Text Solution

    |

  4. A , B , Ca n dD are any four points in the space, then prove that |...

    Text Solution

    |

  5. Let vec O A= vec a , vec O B=10 vec a+2 vec b ,a n d vec O C=bw h e r...

    Text Solution

    |

  6. ABCDEF is a regular hexagon with centre a the origin such that vec(AB)...

    Text Solution

    |

  7. ABCD a parallelogram, and A1 and B1 are the midpoints of sides BC and ...

    Text Solution

    |

  8. The vertices of a triangle have the position vectors veca,vecb,vecc an...

    Text Solution

    |

  9. If veca , vecb and vecc are three vectors such that vecaxx vecb =vecc...

    Text Solution

    |

  10. Vectors veca,vecb and vecc are of the same length and when taken pair-...

    Text Solution

    |

  11. If three vectors veca, vecb,vecc are such that veca ne 0 and veca xx v...

    Text Solution

    |

  12. veca,vecb,vecc are three non-coplanar vectors such that veca+vecb+vecc...

    Text Solution

    |

  13. If S is the cirucmcentre, G the centroid, O the orthocentre of a trian...

    Text Solution

    |

  14. If veca, vecb, vecc are three non-zero vectors such that veca + vecb +...

    Text Solution

    |

  15. Let alpha,beta and gamma be distinct real numbers. The points with pos...

    Text Solution

    |

  16. If |veca|=4, |vecb|=4 and |vecc|=5 such that veca bot vecb + vecc, vec...

    Text Solution

    |

  17. If vecu=veca-vecb, vecv=veca+vecb and |veca|=|vecb|=2, then |vecuxxvec...

    Text Solution

    |

  18. If the vectors vecc, \ veca=xhati+yhatj+zhatk and vecb=hatj are such ...

    Text Solution

    |

  19. Given any vector, vecr,|vecr xx hati|^(2) + |vecr xx hatj|^(2) + |vecr...

    Text Solution

    |

  20. The value of x fot which the angle between the vectors a=-3hat(i)+xhat...

    Text Solution

    |