Home
Class 12
MATHS
The vertices of a triangle have the posi...

The vertices of a triangle have the position vectors `veca,vecb,vecc` and `p( r)` is a point in the plane of `Delta` such that: `veca.vecb+ vecc.vecr = veca.vecc + vecb.vecr = vecb.vecc+veca.vecr` then for the `Delta`, P is the:

A

circumcentre

B

centroid

C

orthocentre

D

incentre

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to analyze the given equations involving the position vectors of the vertices of the triangle and the point \( P \) in the plane of the triangle. ### Step-by-Step Solution: 1. **Given Equations**: We have the following equations: \[ \vec{a} \cdot \vec{b} + \vec{c} \cdot \vec{r} = \vec{a} \cdot \vec{c} + \vec{b} \cdot \vec{r} = \vec{b} \cdot \vec{c} + \vec{a} \cdot \vec{r} \] Let's denote the common value of these expressions as \( k \). 2. **First Equation**: Start with the first part of the equation: \[ \vec{a} \cdot \vec{b} + \vec{c} \cdot \vec{r} = k \] Rearranging gives: \[ \vec{c} \cdot \vec{r} = k - \vec{a} \cdot \vec{b} \] 3. **Second Equation**: Now consider the second part: \[ \vec{a} \cdot \vec{c} + \vec{b} \cdot \vec{r} = k \] Rearranging gives: \[ \vec{b} \cdot \vec{r} = k - \vec{a} \cdot \vec{c} \] 4. **Third Equation**: Now look at the third part: \[ \vec{b} \cdot \vec{c} + \vec{a} \cdot \vec{r} = k \] Rearranging gives: \[ \vec{a} \cdot \vec{r} = k - \vec{b} \cdot \vec{c} \] 5. **Setting Up Perpendicularity**: From the rearranged equations, we can express the relationships between the vectors. We can analyze these equations to find conditions for perpendicularity: - From the first equation, we can derive that \( \vec{a} \) is perpendicular to \( \vec{b} - \vec{c} \). - From the second equation, we can derive that \( \vec{c} \) is perpendicular to \( \vec{a} - \vec{b} \). - From the third equation, we can derive that \( \vec{b} \) is perpendicular to \( \vec{a} - \vec{c} \). 6. **Conclusion**: Since all three conditions indicate that the point \( P \) is the intersection of the altitudes of the triangle, we conclude that point \( P \) is the orthocenter of triangle \( \Delta ABC \). ### Final Answer: Thus, the point \( P \) is the **orthocenter** of triangle \( \Delta ABC \).
Promotional Banner

Topper's Solved these Questions

  • VECTORS

    VMC MODULES ENGLISH|Exercise LEVEL -2|47 Videos
  • VECTORS

    VMC MODULES ENGLISH|Exercise Numerical ValueType for JEE Main|15 Videos
  • VECTORS

    VMC MODULES ENGLISH|Exercise JEE ADVANCED (ARCHIVE) (TRUE/ FALSE)|30 Videos
  • TRIGONOMETRIC IDENTITIES AND EQUATIONS

    VMC MODULES ENGLISH|Exercise JEE Advanced (Archive)|11 Videos

Similar Questions

Explore conceptually related problems

[ veca + vecb vecb + vecc vecc + veca ]=[ veca vecb vecc ] , then

If veca, vecb, vecc are three non-zero vectors such that veca + vecb + vecc=0 and m = veca.vecb + vecb.vecc + vecc.veca , then:

If veca,vecb, vecc are three vectors such that veca + vecb +vecc =vec0, |veca| =1 |vecb| =2, | vecc| =3 , then veca.vecb + vecb .vecc + vecc.veca is equal to

If veca, vecb, vecc are vectors such that veca.vecb=0 and veca + vecb = vecc then:

For any four vectors, prove that ( veca × vecb )×( vecc × vecd )=[ veca vecc vecd ] vecb −[ vecb vecc vecd ] veca

If vecr.veca=vecr.vecb=vecr.vecc=0 " where "veca,vecb and vecc are non-coplanar, then

If the vectors veca, vecb, and vecc are coplanar show that |(veca,vecb,vecc),(veca.veca, veca.vecb,veca.vecc),(vecb.veca,vecb.vecb,vecb.vecc)|=0

If veca,vecb, vecc are three vectors such that |veca |= 5, |vecb| = 12 and | vecc|=13 and veca+vecb+vecc=0 then veca.vecb+vecb.vecc+vecc.veca is equal to

If veca,vecb and vecc are non coplaner vectors such that vecbxxvecc=veca , veccxxveca=vecb and vecaxxvecb=vecc then |veca+vecb+vecc| =

If veca, vecb, vecc are any three vectors such that (veca+vecb).vecc=(veca-vecb)vecc=0 then (vecaxxvecb)xxvecc is

VMC MODULES ENGLISH-VECTORS -LEVEL -1
  1. ABCDEF is a regular hexagon with centre a the origin such that vec(AB)...

    Text Solution

    |

  2. ABCD a parallelogram, and A1 and B1 are the midpoints of sides BC and ...

    Text Solution

    |

  3. The vertices of a triangle have the position vectors veca,vecb,vecc an...

    Text Solution

    |

  4. If veca , vecb and vecc are three vectors such that vecaxx vecb =vecc...

    Text Solution

    |

  5. Vectors veca,vecb and vecc are of the same length and when taken pair-...

    Text Solution

    |

  6. If three vectors veca, vecb,vecc are such that veca ne 0 and veca xx v...

    Text Solution

    |

  7. veca,vecb,vecc are three non-coplanar vectors such that veca+vecb+vecc...

    Text Solution

    |

  8. If S is the cirucmcentre, G the centroid, O the orthocentre of a trian...

    Text Solution

    |

  9. If veca, vecb, vecc are three non-zero vectors such that veca + vecb +...

    Text Solution

    |

  10. Let alpha,beta and gamma be distinct real numbers. The points with pos...

    Text Solution

    |

  11. If |veca|=4, |vecb|=4 and |vecc|=5 such that veca bot vecb + vecc, vec...

    Text Solution

    |

  12. If vecu=veca-vecb, vecv=veca+vecb and |veca|=|vecb|=2, then |vecuxxvec...

    Text Solution

    |

  13. If the vectors vecc, \ veca=xhati+yhatj+zhatk and vecb=hatj are such ...

    Text Solution

    |

  14. Given any vector, vecr,|vecr xx hati|^(2) + |vecr xx hatj|^(2) + |vecr...

    Text Solution

    |

  15. The value of x fot which the angle between the vectors a=-3hat(i)+xhat...

    Text Solution

    |

  16. If a,b and c are non-coplanar vectors and lamda is a real number, then...

    Text Solution

    |

  17. Let vecb and vecc be non-collinear vectors. If veca is a vector such t...

    Text Solution

    |

  18. Let O be the centre of a regular pentagon ABCDE and vec(OA) = veca, th...

    Text Solution

    |

  19. If vecr=x(vecaxxvecb)+y(vecbxxvecc)+z(veccxxveca) and [veca vecb v...

    Text Solution

    |

  20. if veca , vecb and vecc are three non-zero, non- coplanar vectors and ...

    Text Solution

    |