Home
Class 12
MATHS
If three vectors veca, vecb,vecc are suc...

If three vectors `veca, vecb,vecc` are such that `veca ne 0` and `veca xx vecb = 2(veca xx vecc),|veca|=|vecc|=1, |vecb|=4` and the angle between `vecb` and `vecc` is `cos^(-1)(1//4)`, then `vecb-2vecc= lambda veca` where `lambda` is equal to:

A

4

B

`-4`

C

2

D

`-2`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem step by step, we will follow the reasoning provided in the video transcript while adding clarity and structure to each step. ### Step 1: Understand the given information We have three vectors: \(\vec{a}\), \(\vec{b}\), and \(\vec{c}\). The conditions provided are: 1. \(\vec{a} \neq 0\) 2. \(\vec{a} \times \vec{b} = 2(\vec{a} \times \vec{c})\) 3. \(|\vec{a}| = |\vec{c}| = 1\) 4. \(|\vec{b}| = 4\) 5. The angle between \(\vec{b}\) and \(\vec{c}\) is \(\cos^{-1}(\frac{1}{4})\). ### Step 2: Rearranging the cross product equation From the equation \(\vec{a} \times \vec{b} = 2(\vec{a} \times \vec{c})\), we can rearrange this to: \[ \vec{a} \times \vec{b} - 2(\vec{a} \times \vec{c}) = 0 \] Factoring out \(\vec{a}\), we get: \[ \vec{a} \times (\vec{b} - 2\vec{c}) = 0 \] This implies that \(\vec{a}\) is parallel to \(\vec{b} - 2\vec{c}\). Therefore, we can write: \[ \vec{b} - 2\vec{c} = \lambda \vec{a} \] for some scalar \(\lambda\). ### Step 3: Squaring both sides Now, we will square both sides of the equation: \[ |\vec{b} - 2\vec{c}|^2 = |\lambda \vec{a}|^2 \] This simplifies to: \[ |\vec{b} - 2\vec{c}|^2 = \lambda^2 |\vec{a}|^2 \] Since \(|\vec{a}| = 1\), we have: \[ |\vec{b} - 2\vec{c}|^2 = \lambda^2 \] ### Step 4: Expanding the left-hand side Now we expand the left-hand side: \[ |\vec{b} - 2\vec{c}|^2 = |\vec{b}|^2 + |2\vec{c}|^2 - 2(\vec{b} \cdot 2\vec{c}) \] This becomes: \[ |\vec{b}|^2 + 4|\vec{c}|^2 - 4(\vec{b} \cdot \vec{c}) \] Substituting the magnitudes: \[ |\vec{b}|^2 = 4^2 = 16, \quad |\vec{c}|^2 = 1^2 = 1 \] Thus: \[ |\vec{b} - 2\vec{c}|^2 = 16 + 4 - 4(\vec{b} \cdot \vec{c}) \] Now we need to find \(\vec{b} \cdot \vec{c}\). ### Step 5: Finding \(\vec{b} \cdot \vec{c}\) Using the cosine of the angle between \(\vec{b}\) and \(\vec{c}\): \[ \vec{b} \cdot \vec{c} = |\vec{b}| |\vec{c}| \cos(\theta) = 4 \cdot 1 \cdot \frac{1}{4} = 1 \] ### Step 6: Substitute back into the equation Now substituting \(\vec{b} \cdot \vec{c} = 1\) into our equation: \[ |\vec{b} - 2\vec{c}|^2 = 16 + 4 - 4 \cdot 1 = 16 + 4 - 4 = 16 \] Thus: \[ |\vec{b} - 2\vec{c}|^2 = 16 \] ### Step 7: Relating to \(\lambda\) Now we have: \[ \lambda^2 = 16 \] Taking the square root gives: \[ \lambda = \pm 4 \] ### Final Answer Thus, the value of \(\lambda\) is \(4\) or \(-4\). ---
Promotional Banner

Topper's Solved these Questions

  • VECTORS

    VMC MODULES ENGLISH|Exercise LEVEL -2|47 Videos
  • VECTORS

    VMC MODULES ENGLISH|Exercise Numerical ValueType for JEE Main|15 Videos
  • VECTORS

    VMC MODULES ENGLISH|Exercise JEE ADVANCED (ARCHIVE) (TRUE/ FALSE)|30 Videos
  • TRIGONOMETRIC IDENTITIES AND EQUATIONS

    VMC MODULES ENGLISH|Exercise JEE Advanced (Archive)|11 Videos

Similar Questions

Explore conceptually related problems

Three vectors veca,vecb,vecc are such that veca xx vecb=4(veca xx vecc) and |veca|=|vecb|=1 and |vecc|=1/4 . If the angle between vecb and vecc is pi/3 then vecb is

veca and vecc are unit vectors and |vecb|=4 the angle between veca and vecc is cos ^(-1)(1//4) and vecb - 2vecc=lambdaveca the value of lambda is

If veca, vecb, vecc are vectors such that veca.vecb=0 and veca + vecb = vecc then:

veca and vecc are unit vectors and |vecb|=4 the angle between veca and vecb is cos ^(-1)(1//4) and vecb - 2vecc=lambdaveca the value of lambda is

if veca + vecb + vecc=0 , then show that veca xx vecb = vecb xx vecc = vecc xx veca .

if veca , vecb ,vecc are three vectors such that veca +vecb + vecc = vec0 then

for any three vectors, veca, vecb and vecc , (veca-vecb) . (vecb -vecc) xx (vecc -veca) =

If veca,vecb, vecc are three vectors such that veca + vecb +vecc =vec0, |veca| =1 |vecb| =2, | vecc| =3 , then veca.vecb + vecb .vecc + vecc.veca is equal to

If veca + 2 vecb + 3 vecc = vec0 " then " veca xx vecb + vecb xx vecc + vecc xx veca=

If veca, vecb and vecc are three vectors, such that |veca|=2, |vecb|=3, |vecc|=4, veca. vecc=0, veca. vecb=0 and the angle between vecb and vecc is (pi)/(3) , then the value of |veca xx (2vecb - 3 vecc)| is equal to

VMC MODULES ENGLISH-VECTORS -LEVEL -1
  1. If veca , vecb and vecc are three vectors such that vecaxx vecb =vecc...

    Text Solution

    |

  2. Vectors veca,vecb and vecc are of the same length and when taken pair-...

    Text Solution

    |

  3. If three vectors veca, vecb,vecc are such that veca ne 0 and veca xx v...

    Text Solution

    |

  4. veca,vecb,vecc are three non-coplanar vectors such that veca+vecb+vecc...

    Text Solution

    |

  5. If S is the cirucmcentre, G the centroid, O the orthocentre of a trian...

    Text Solution

    |

  6. If veca, vecb, vecc are three non-zero vectors such that veca + vecb +...

    Text Solution

    |

  7. Let alpha,beta and gamma be distinct real numbers. The points with pos...

    Text Solution

    |

  8. If |veca|=4, |vecb|=4 and |vecc|=5 such that veca bot vecb + vecc, vec...

    Text Solution

    |

  9. If vecu=veca-vecb, vecv=veca+vecb and |veca|=|vecb|=2, then |vecuxxvec...

    Text Solution

    |

  10. If the vectors vecc, \ veca=xhati+yhatj+zhatk and vecb=hatj are such ...

    Text Solution

    |

  11. Given any vector, vecr,|vecr xx hati|^(2) + |vecr xx hatj|^(2) + |vecr...

    Text Solution

    |

  12. The value of x fot which the angle between the vectors a=-3hat(i)+xhat...

    Text Solution

    |

  13. If a,b and c are non-coplanar vectors and lamda is a real number, then...

    Text Solution

    |

  14. Let vecb and vecc be non-collinear vectors. If veca is a vector such t...

    Text Solution

    |

  15. Let O be the centre of a regular pentagon ABCDE and vec(OA) = veca, th...

    Text Solution

    |

  16. If vecr=x(vecaxxvecb)+y(vecbxxvecc)+z(veccxxveca) and [veca vecb v...

    Text Solution

    |

  17. if veca , vecb and vecc are three non-zero, non- coplanar vectors and ...

    Text Solution

    |

  18. Let veca=veci-veck,vecb=xveci+vecj+(1-x)veck and vecc=yveci+xvecj+(1+x...

    Text Solution

    |

  19. Let veca, vecb and vecc be three units vectors such that 3veca + 4vecb...

    Text Solution

    |

  20. The value of x for which the angle between veca=2x^(2)hati+4xhatj + ha...

    Text Solution

    |