Home
Class 12
MATHS
If |veca|=4, |vecb|=4 and |vecc|=5 such ...

If `|veca|=4, |vecb|=4` and `|vecc|=5` such that `veca bot vecb + vecc, vecb bot (vecc + veca)` and `vecc bot (veca + vecb)`, then `|veca + vecb + vecc|` is:

A

7

B

5

C

13

D

`sqrt(57)`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem step by step, we will use the given conditions about the vectors and their magnitudes. ### Step 1: Understand the Given Information We are given: - Magnitude of vector \( \vec{a} \) is \( |\vec{a}| = 4 \) - Magnitude of vector \( \vec{b} \) is \( |\vec{b}| = 4 \) - Magnitude of vector \( \vec{c} \) is \( |\vec{c}| = 5 \) Additionally, we know: - \( \vec{a} \bot (\vec{b} + \vec{c}) \) - \( \vec{b} \bot (\vec{c} + \vec{a}) \) - \( \vec{c} \bot (\vec{a} + \vec{b}) \) ### Step 2: Set Up the Dot Product Equations Since the vectors are perpendicular to the sums of the other two vectors, we can write the following equations using the dot product: 1. \( \vec{a} \cdot (\vec{b} + \vec{c}) = 0 \) - This expands to \( \vec{a} \cdot \vec{b} + \vec{a} \cdot \vec{c} = 0 \) (Equation 1) 2. \( \vec{b} \cdot (\vec{c} + \vec{a}) = 0 \) - This expands to \( \vec{b} \cdot \vec{c} + \vec{b} \cdot \vec{a} = 0 \) (Equation 2) 3. \( \vec{c} \cdot (\vec{a} + \vec{b}) = 0 \) - This expands to \( \vec{c} \cdot \vec{a} + \vec{c} \cdot \vec{b} = 0 \) (Equation 3) ### Step 3: Analyze the Dot Product Equations From these equations, we can deduce: - From Equation 1: \( \vec{a} \cdot \vec{b} + \vec{a} \cdot \vec{c} = 0 \) implies \( \vec{a} \cdot \vec{b} = -\vec{a} \cdot \vec{c} \) - From Equation 2: \( \vec{b} \cdot \vec{c} + \vec{b} \cdot \vec{a} = 0 \) implies \( \vec{b} \cdot \vec{c} = -\vec{b} \cdot \vec{a} \) - From Equation 3: \( \vec{c} \cdot \vec{a} + \vec{c} \cdot \vec{b} = 0 \) implies \( \vec{c} \cdot \vec{a} = -\vec{c} \cdot \vec{b} \) ### Step 4: Calculate the Magnitude of \( \vec{a} + \vec{b} + \vec{c} \) To find \( |\vec{a} + \vec{b} + \vec{c}| \), we calculate: \[ |\vec{a} + \vec{b} + \vec{c}|^2 = (\vec{a} + \vec{b} + \vec{c}) \cdot (\vec{a} + \vec{b} + \vec{c}) \] Expanding this gives: \[ |\vec{a}|^2 + |\vec{b}|^2 + |\vec{c}|^2 + 2(\vec{a} \cdot \vec{b} + \vec{b} \cdot \vec{c} + \vec{c} \cdot \vec{a}) \] Substituting the magnitudes: \[ = 4^2 + 4^2 + 5^2 + 2(0) = 16 + 16 + 25 + 0 = 57 \] ### Step 5: Final Calculation Thus, we have: \[ |\vec{a} + \vec{b} + \vec{c}|^2 = 57 \] Taking the square root: \[ |\vec{a} + \vec{b} + \vec{c}| = \sqrt{57} \] ### Final Answer The magnitude \( |\vec{a} + \vec{b} + \vec{c}| \) is \( \sqrt{57} \). ---
Promotional Banner

Topper's Solved these Questions

  • VECTORS

    VMC MODULES ENGLISH|Exercise LEVEL -2|47 Videos
  • VECTORS

    VMC MODULES ENGLISH|Exercise Numerical ValueType for JEE Main|15 Videos
  • VECTORS

    VMC MODULES ENGLISH|Exercise JEE ADVANCED (ARCHIVE) (TRUE/ FALSE)|30 Videos
  • TRIGONOMETRIC IDENTITIES AND EQUATIONS

    VMC MODULES ENGLISH|Exercise JEE Advanced (Archive)|11 Videos

Similar Questions

Explore conceptually related problems

Let veca , vecb,vecc be three vectors such that veca bot ( vecb + vecc), vecb bot ( vecc + veca) and vecc bot ( veca + vecb) , " if " |veca| =1 , |vecb| =2 , |vecc| =3 , " then " | veca + vecb + vecc| is,

If veca , vecb and vecc are three vectors such that vecaxx vecb =vecc, vecb xx vecc= veca, vecc xx veca =vecb then prove that |veca|= |vecb|=|vecc|

[ veca + vecb vecb + vecc vecc + veca ]=[ veca vecb vecc ] , then

If |veca|=3,|vecb|= 5 and |vecc|=4 and veca+ vecb + vecc =vec0 then the value of ( veca. vecb + vecb.vecc) is equal tio

Let veclamda=veca times (vecb +vecc), vecmu=vecb times (vecc+veca) and vecv=vecc times (veca+vecb) , Then

If |veca|=3, |vecb|=1, |vecc|=4 and veca + vecb + vecc= vec0 , find the value of veca.vecb+ vecb.vecc + vecc.veca .

If veca, vecb, vecc are vectors such that veca.vecb=0 and veca + vecb = vecc then:

If veca, vecb,vecc are three non-coplanar vectors such that veca xx vecb=vecc,vecb xx vecc=veca,vecc xx veca=vecb , then the value of |veca|+|vecb|+|vecc| is

if veca + vecb + vecc=0 , then show that veca xx vecb = vecb xx vecc = vecc xx veca .

If |veca|=1,|vecb|=2,|vecc|=3and veca+vecb+vecc=0 the show that veca.vecb+vecb.vecc+vecc.veca=- 7

VMC MODULES ENGLISH-VECTORS -LEVEL -1
  1. If veca, vecb, vecc are three non-zero vectors such that veca + vecb +...

    Text Solution

    |

  2. Let alpha,beta and gamma be distinct real numbers. The points with pos...

    Text Solution

    |

  3. If |veca|=4, |vecb|=4 and |vecc|=5 such that veca bot vecb + vecc, vec...

    Text Solution

    |

  4. If vecu=veca-vecb, vecv=veca+vecb and |veca|=|vecb|=2, then |vecuxxvec...

    Text Solution

    |

  5. If the vectors vecc, \ veca=xhati+yhatj+zhatk and vecb=hatj are such ...

    Text Solution

    |

  6. Given any vector, vecr,|vecr xx hati|^(2) + |vecr xx hatj|^(2) + |vecr...

    Text Solution

    |

  7. The value of x fot which the angle between the vectors a=-3hat(i)+xhat...

    Text Solution

    |

  8. If a,b and c are non-coplanar vectors and lamda is a real number, then...

    Text Solution

    |

  9. Let vecb and vecc be non-collinear vectors. If veca is a vector such t...

    Text Solution

    |

  10. Let O be the centre of a regular pentagon ABCDE and vec(OA) = veca, th...

    Text Solution

    |

  11. If vecr=x(vecaxxvecb)+y(vecbxxvecc)+z(veccxxveca) and [veca vecb v...

    Text Solution

    |

  12. if veca , vecb and vecc are three non-zero, non- coplanar vectors and ...

    Text Solution

    |

  13. Let veca=veci-veck,vecb=xveci+vecj+(1-x)veck and vecc=yveci+xvecj+(1+x...

    Text Solution

    |

  14. Let veca, vecb and vecc be three units vectors such that 3veca + 4vecb...

    Text Solution

    |

  15. The value of x for which the angle between veca=2x^(2)hati+4xhatj + ha...

    Text Solution

    |

  16. Given three vectors veca=6hati-3hatj,vecb=2hati-6hatj and vecc=-2hati+...

    Text Solution

    |

  17. If vecalpha+ vecbeta+ vecgamma=a vecdeltaa n d vecbeta+ vecgamma+ vec...

    Text Solution

    |

  18. If unit vector vecc makes an angle pi/3 with hati + hatj, then minimum...

    Text Solution

    |

  19. If veca, vecb, vecc are non-coplanar vectors, then (veca.(vecb xx vecc...

    Text Solution

    |

  20. For non-zero vectors veca, vecb and vecc , |(veca xx vecb) .vecc| = |v...

    Text Solution

    |