Home
Class 12
MATHS
Let O be the centre of a regular pentago...

Let O be the centre of a regular pentagon ABCDE and `vec(OA) = veca`, then `vec(AB) +vec(2BC) + vec(3CD) + vec(4DE) + vec(5EA)` is equals:

A

0

B

`4veca`

C

`5veca`

D

`6veca`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to evaluate the expression \( \vec{AB} + 2\vec{BC} + 3\vec{CD} + 4\vec{DE} + 5\vec{EA} \) given that \( \vec{OA} = \vec{a} \). ### Step-by-Step Solution: 1. **Identify the Vectors**: We know that \( O \) is the center of the pentagon, and we can express the vectors in terms of the position vectors of points \( A, B, C, D, \) and \( E \) relative to the center \( O \). - Let \( \vec{A} = \vec{a} \) - Let \( \vec{B} = \vec{b} \) - Let \( \vec{C} = \vec{c} \) - Let \( \vec{D} = \vec{d} \) - Let \( \vec{E} = \vec{e} \) 2. **Express Each Segment Vector**: - \( \vec{AB} = \vec{B} - \vec{A} = \vec{b} - \vec{a} \) - \( \vec{BC} = \vec{C} - \vec{B} = \vec{c} - \vec{b} \) - \( \vec{CD} = \vec{D} - \vec{C} = \vec{d} - \vec{c} \) - \( \vec{DE} = \vec{E} - \vec{D} = \vec{e} - \vec{d} \) - \( \vec{EA} = \vec{A} - \vec{E} = \vec{a} - \vec{e} \) 3. **Substitute into the Expression**: Substitute these expressions into the original equation: \[ \vec{AB} + 2\vec{BC} + 3\vec{CD} + 4\vec{DE} + 5\vec{EA} = (\vec{b} - \vec{a}) + 2(\vec{c} - \vec{b}) + 3(\vec{d} - \vec{c}) + 4(\vec{e} - \vec{d}) + 5(\vec{a} - \vec{e}) \] 4. **Combine Like Terms**: Now, let's combine all the terms: \[ = \vec{b} - \vec{a} + 2\vec{c} - 2\vec{b} + 3\vec{d} - 3\vec{c} + 4\vec{e} - 4\vec{d} + 5\vec{a} - 5\vec{e} \] Rearranging gives: \[ = (-\vec{a} + 5\vec{a}) + (\vec{b} - 2\vec{b}) + (2\vec{c} - 3\vec{c}) + (3\vec{d} - 4\vec{d}) + (4\vec{e} - 5\vec{e}) \] \[ = 4\vec{a} - \vec{b} - \vec{c} - \vec{d} - \vec{e} \] 5. **Sum of Vectors in a Regular Pentagon**: In a regular pentagon, the sum of the position vectors from the center \( O \) to the vertices \( A, B, C, D, E \) is zero: \[ \vec{a} + \vec{b} + \vec{c} + \vec{d} + \vec{e} = 0 \] Therefore, we can substitute \( \vec{b} + \vec{c} + \vec{d} + \vec{e} = -\vec{a} \) into our expression: \[ = 4\vec{a} - (-\vec{a}) = 4\vec{a} + \vec{a} = 5\vec{a} \] 6. **Final Result**: Thus, we conclude that: \[ \vec{AB} + 2\vec{BC} + 3\vec{CD} + 4\vec{DE} + 5\vec{EA} = 5\vec{a} \] ### Final Answer: \[ \vec{AB} + 2\vec{BC} + 3\vec{CD} + 4\vec{DE} + 5\vec{EA} = 5\vec{a} \]
Promotional Banner

Topper's Solved these Questions

  • VECTORS

    VMC MODULES ENGLISH|Exercise LEVEL -2|47 Videos
  • VECTORS

    VMC MODULES ENGLISH|Exercise Numerical ValueType for JEE Main|15 Videos
  • VECTORS

    VMC MODULES ENGLISH|Exercise JEE ADVANCED (ARCHIVE) (TRUE/ FALSE)|30 Videos
  • TRIGONOMETRIC IDENTITIES AND EQUATIONS

    VMC MODULES ENGLISH|Exercise JEE Advanced (Archive)|11 Videos

Similar Questions

Explore conceptually related problems

If ABCDE is a pentagon, then vec(AB) + vec(AE) + vec(BC) + vec(DC) + vec(ED) + vec(AC) is equal to

Let O be the centre of the regular hexagon ABCDEF then find vec(OA)+vec(OB)+vec(OD)+vec(OC)+vec(OE)+vec(OF)

If ABCD is a quadrilateral, then vec(BA) + vec(BC)+vec(CD) + vec(DA)=

Let O be the centre of a regular hexagon A B C D E F . Find the sum of the vectors vec O A , vec O B , vec O C , vec O D , vec O Ea n d vec O F .

If ABCDEF is a regular hexagon with vec(AB) = veca and vec(BC)= vecb, then vec(CE) equals

Let G be the centroid of Delta ABC , If vec(AB) = vec a , vec(AC) = vec b, then the vec(AG), in terms of vec a and vec b, is

In a regular hexagon ABCDEF, prove that vec(AB)+vec(AC)+vec(AD)+vec(AE)+vec(AF)=3vec(AD)

If OACB is a parallelogrma with vec( OC) = vec(a) and vec( AB) = vec(b) then vec(OA) is equal to

If ABCD is a rhombus whose diagonals intersect at E, then vec(EA) + vec(EB) + vec(EC) + vec( ED) equals

Assertion ABCDEF is a regular hexagon and vec(AB)=veca,vec(BC)=vecb and vec(CD)=vecc, then vec(EA) is equal to -(vecb+vecc) , Reason: vec(AE)=vec(BD)=vec(BC)+vec(CD) (A) Both A and R are true and R is the correct explanation of A (B) Both A and R are true R is not te correct explanation of A (C) A is true but R is false. (D) A is false but R is true.

VMC MODULES ENGLISH-VECTORS -LEVEL -1
  1. If a,b and c are non-coplanar vectors and lamda is a real number, then...

    Text Solution

    |

  2. Let vecb and vecc be non-collinear vectors. If veca is a vector such t...

    Text Solution

    |

  3. Let O be the centre of a regular pentagon ABCDE and vec(OA) = veca, th...

    Text Solution

    |

  4. If vecr=x(vecaxxvecb)+y(vecbxxvecc)+z(veccxxveca) and [veca vecb v...

    Text Solution

    |

  5. if veca , vecb and vecc are three non-zero, non- coplanar vectors and ...

    Text Solution

    |

  6. Let veca=veci-veck,vecb=xveci+vecj+(1-x)veck and vecc=yveci+xvecj+(1+x...

    Text Solution

    |

  7. Let veca, vecb and vecc be three units vectors such that 3veca + 4vecb...

    Text Solution

    |

  8. The value of x for which the angle between veca=2x^(2)hati+4xhatj + ha...

    Text Solution

    |

  9. Given three vectors veca=6hati-3hatj,vecb=2hati-6hatj and vecc=-2hati+...

    Text Solution

    |

  10. If vecalpha+ vecbeta+ vecgamma=a vecdeltaa n d vecbeta+ vecgamma+ vec...

    Text Solution

    |

  11. If unit vector vecc makes an angle pi/3 with hati + hatj, then minimum...

    Text Solution

    |

  12. If veca, vecb, vecc are non-coplanar vectors, then (veca.(vecb xx vecc...

    Text Solution

    |

  13. For non-zero vectors veca, vecb and vecc , |(veca xx vecb) .vecc| = |v...

    Text Solution

    |

  14. If veca + 2 vecb + 3 vecc = vec0 " then " veca xx vecb + vecb xx vecc...

    Text Solution

    |

  15. If veca,vecb, vecc are unit coplanar vectors then the scalar triple pr...

    Text Solution

    |

  16. veca, vecb,vecc are non-coplanar vectors and vecp,vecq,vecr are define...

    Text Solution

    |

  17. If |veca|=3, |vecb|=1, |vecc|=4 and veca + vecb + vecc= vec0, find the...

    Text Solution

    |

  18. Let vecb= 4 hati + 3hatj and vecc be two vectors perpendicular to each...

    Text Solution

    |

  19. If vecd=lambda(vecaxxvecb)+mu(vecbxxvecc)+t(veccxxveca).[veca,vecbvecc...

    Text Solution

    |

  20. Let vecb and vecc be non-collinear vectors. If veca is a vector such t...

    Text Solution

    |