Home
Class 12
MATHS
Given three vectors veca=6hati-3hatj,vec...

Given three vectors `veca=6hati-3hatj,vecb=2hati-6hatj and vecc=-2hati+21hatj` such that `vecalpha=veca+vecb+vecc`. Then the resolution of te vector `vecalpha` into components with respect to `veca and vecb` is given by (A) `3veca-2vecb` (B) `2veca-3vecb` (C) `3vecb-2veca` (D) none of these

A

`3veca - 2vecb`

B

`2veca - 3vecb`

C

`3vecb - 2veca`

D

None of these

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to find the vector \(\vec{\alpha}\) which is the sum of the given vectors \(\vec{a}\), \(\vec{b}\), and \(\vec{c}\). Then we will express \(\vec{\alpha}\) in terms of \(\vec{a}\) and \(\vec{b}\). ### Step 1: Calculate \(\vec{\alpha}\) Given: \[ \vec{a} = 6\hat{i} - 3\hat{j} \] \[ \vec{b} = 2\hat{i} - 6\hat{j} \] \[ \vec{c} = -2\hat{i} + 21\hat{j} \] Now, we find \(\vec{\alpha}\): \[ \vec{\alpha} = \vec{a} + \vec{b} + \vec{c} \] Calculating the components: - For \(\hat{i}\): \[ 6 + 2 - 2 = 6 \] - For \(\hat{j}\): \[ -3 - 6 + 21 = 12 \] Thus, \[ \vec{\alpha} = 6\hat{i} + 12\hat{j} \] ### Step 2: Express \(\vec{\alpha}\) in terms of \(\vec{a}\) and \(\vec{b}\) We want to express \(\vec{\alpha}\) as: \[ \vec{\alpha} = x\vec{a} + y\vec{b} \] Substituting the values of \(\vec{a}\) and \(\vec{b}\): \[ 6\hat{i} + 12\hat{j} = x(6\hat{i} - 3\hat{j}) + y(2\hat{i} - 6\hat{j}) \] Expanding the right-hand side: \[ = (6x + 2y)\hat{i} + (-3x - 6y)\hat{j} \] ### Step 3: Set up equations for coefficients Now we equate the coefficients of \(\hat{i}\) and \(\hat{j}\): 1. For \(\hat{i}\): \[ 6 = 6x + 2y \quad \text{(1)} \] 2. For \(\hat{j}\): \[ 12 = -3x - 6y \quad \text{(2)} \] ### Step 4: Solve the equations From equation (1): \[ 6 = 6x + 2y \implies 3 = 3x + y \implies y = 3 - 3x \quad \text{(3)} \] Substituting equation (3) into equation (2): \[ 12 = -3x - 6(3 - 3x) \] \[ 12 = -3x - 18 + 18x \] \[ 12 + 18 = 15x \] \[ 30 = 15x \implies x = 2 \] Now substituting \(x = 2\) back into equation (3): \[ y = 3 - 3(2) = 3 - 6 = -3 \] ### Step 5: Write \(\vec{\alpha}\) in terms of \(\vec{a}\) and \(\vec{b}\) Now we have \(x = 2\) and \(y = -3\): \[ \vec{\alpha} = 2\vec{a} - 3\vec{b} \] ### Final Result Thus, the resolution of the vector \(\vec{\alpha}\) into components with respect to \(\vec{a}\) and \(\vec{b}\) is: \[ \vec{\alpha} = 2\vec{a} - 3\vec{b} \] ### Conclusion The correct option is (B) \(2\vec{a} - 3\vec{b}\).
Promotional Banner

Topper's Solved these Questions

  • VECTORS

    VMC MODULES ENGLISH|Exercise LEVEL -2|47 Videos
  • VECTORS

    VMC MODULES ENGLISH|Exercise Numerical ValueType for JEE Main|15 Videos
  • VECTORS

    VMC MODULES ENGLISH|Exercise JEE ADVANCED (ARCHIVE) (TRUE/ FALSE)|30 Videos
  • TRIGONOMETRIC IDENTITIES AND EQUATIONS

    VMC MODULES ENGLISH|Exercise JEE Advanced (Archive)|11 Videos

Similar Questions

Explore conceptually related problems

If veca=hati+hatj,vecb=hati-hatj , then veca.vecb=

If veca=2hati+3hatj+hatk, vecb=hati-2hatj+hatk and vecc=-3hati+hatj+2hatk , then [veca vecb vecc]=

If veca=2hati+3hatj+hatk, vecb=hati-2hatj+hatk and vecc=-3hati+hatj+2hatk , then [veca vecb vecc]=

Let veca=hati-hatj+hatk, vecb=2hati+hatj+hatk and vecc=hati+hatj-2hatk , then the value of [(veca, vecb, vecc)] is equal to

Let veca=2hati+3hatj+4hatk, vecb=hati-2hatj+hatk and vecc=hati+hatj-hatk. If vecr xx veca =vecb and vecr.vec c=3, then the value of |vecr| is equal to

If veca=hati+hatj+hatk and vecb=hatj-hatk find a vector vecc such that vecaxxvecc=vecb and veca.vecc=3 .

If veca=7hati+3hatj-6hatk , vecb=2hati+5hatj-hatk and vecc=-hati+2hatj+4hatk . Find (veca-vecb)xx(vecc-vecb) .

If veca=hati+hatj, vecb=hatj+hatk, vec c hatk+hati , a unit vector parallel to veca+vecb+vecc .

If veca=2hati+3hatj+4hatk,veca.vecb=2 and vecaxxvecb=2hati-hatk , then vecb is

Let veca=hati-hatj,vecb=hati+hatj+hatk and vecc be a vector such that vecaxxvecc+vecb=vec0 and veca.vecc=4 , then |vecc|^(2) is equal to:

VMC MODULES ENGLISH-VECTORS -LEVEL -1
  1. Let veca, vecb and vecc be three units vectors such that 3veca + 4vecb...

    Text Solution

    |

  2. The value of x for which the angle between veca=2x^(2)hati+4xhatj + ha...

    Text Solution

    |

  3. Given three vectors veca=6hati-3hatj,vecb=2hati-6hatj and vecc=-2hati+...

    Text Solution

    |

  4. If vecalpha+ vecbeta+ vecgamma=a vecdeltaa n d vecbeta+ vecgamma+ vec...

    Text Solution

    |

  5. If unit vector vecc makes an angle pi/3 with hati + hatj, then minimum...

    Text Solution

    |

  6. If veca, vecb, vecc are non-coplanar vectors, then (veca.(vecb xx vecc...

    Text Solution

    |

  7. For non-zero vectors veca, vecb and vecc , |(veca xx vecb) .vecc| = |v...

    Text Solution

    |

  8. If veca + 2 vecb + 3 vecc = vec0 " then " veca xx vecb + vecb xx vecc...

    Text Solution

    |

  9. If veca,vecb, vecc are unit coplanar vectors then the scalar triple pr...

    Text Solution

    |

  10. veca, vecb,vecc are non-coplanar vectors and vecp,vecq,vecr are define...

    Text Solution

    |

  11. If |veca|=3, |vecb|=1, |vecc|=4 and veca + vecb + vecc= vec0, find the...

    Text Solution

    |

  12. Let vecb= 4 hati + 3hatj and vecc be two vectors perpendicular to each...

    Text Solution

    |

  13. If vecd=lambda(vecaxxvecb)+mu(vecbxxvecc)+t(veccxxveca).[veca,vecbvecc...

    Text Solution

    |

  14. Let vecb and vecc be non-collinear vectors. If veca is a vector such t...

    Text Solution

    |

  15. Let O be the centre of a regular pentagon ABCDE and vec(OA) = veca, th...

    Text Solution

    |

  16. A vector veca=(x,y,z) makes an obtuse angle with F-axis, and make equa...

    Text Solution

    |

  17. Given a parallelogram ABCD. If |AB|=a, |AD|=b, |AC|=c, then DB*AB has ...

    Text Solution

    |

  18. A, B C and D are four points in a plane with position vectors, veca, v...

    Text Solution

    |

  19. vecx and vecy are two mutually perpendicular unit vectors. If the vect...

    Text Solution

    |

  20. If non-zero vectors veca and vecb are perpendicular to each ot...

    Text Solution

    |