Home
Class 12
MATHS
veca, vecb,vecc are non-coplanar vectors...

`veca, vecb,vecc` are non-coplanar vectors and `vecp,vecq,vecr` are defined as `vecp = (vecb xx vecc)/([vecb vecc veca]),q=(vecc xx veca)/([vecc veca vecb]), vecr =(veca xx vecb)/([veca vecb vecc])` then `(veca + vecb).vecp+(vecb+vecc).vecq + (vecc + veca).vecr` is equal to.

A

0

B

1

C

2

D

3

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to evaluate the expression \((\vec{a} + \vec{b}) \cdot \vec{p} + (\vec{b} + \vec{c}) \cdot \vec{q} + (\vec{c} + \vec{a}) \cdot \vec{r}\), where the vectors \(\vec{p}\), \(\vec{q}\), and \(\vec{r}\) are defined as follows: \[ \vec{p} = \frac{\vec{b} \times \vec{c}}{[\vec{b}, \vec{c}, \vec{a}]}, \quad \vec{q} = \frac{\vec{c} \times \vec{a}}{[\vec{c}, \vec{a}, \vec{b}]}, \quad \vec{r} = \frac{\vec{a} \times \vec{b}}{[\vec{a}, \vec{b}, \vec{c}]} \] ### Step-by-step Solution: 1. **Expand the Expression**: We start with the expression: \[ (\vec{a} + \vec{b}) \cdot \vec{p} + (\vec{b} + \vec{c}) \cdot \vec{q} + (\vec{c} + \vec{a}) \cdot \vec{r} \] This can be expanded as: \[ \vec{a} \cdot \vec{p} + \vec{b} \cdot \vec{p} + \vec{b} \cdot \vec{q} + \vec{c} \cdot \vec{q} + \vec{c} \cdot \vec{r} + \vec{a} \cdot \vec{r} \] 2. **Substituting the Values of \(\vec{p}\), \(\vec{q}\), and \(\vec{r}\)**: Substitute the definitions of \(\vec{p}\), \(\vec{q}\), and \(\vec{r}\): \[ \vec{a} \cdot \left(\frac{\vec{b} \times \vec{c}}{[\vec{b}, \vec{c}, \vec{a}]}\right) + \vec{b} \cdot \left(\frac{\vec{b} \times \vec{c}}{[\vec{b}, \vec{c}, \vec{a}]}\right) + \vec{b} \cdot \left(\frac{\vec{c} \times \vec{a}}{[\vec{c}, \vec{a}, \vec{b}]}\right) + \vec{c} \cdot \left(\frac{\vec{c} \times \vec{a}}{[\vec{c}, \vec{a}, \vec{b}]}\right) + \vec{c} \cdot \left(\frac{\vec{a} \times \vec{b}}{[\vec{a}, \vec{b}, \vec{c}]}\right) + \vec{a} \cdot \left(\frac{\vec{a} \times \vec{b}}{[\vec{a}, \vec{b}, \vec{c}]}\right) \] 3. **Using the Property of Dot and Cross Products**: Recall that for any vector \(\vec{x}\), \(\vec{x} \cdot (\vec{y} \times \vec{z}) = 0\) if \(\vec{x}\) is one of the vectors in the cross product. Thus: - \(\vec{b} \cdot (\vec{b} \times \vec{c}) = 0\) - \(\vec{c} \cdot (\vec{c} \times \vec{a}) = 0\) - \(\vec{a} \cdot (\vec{a} \times \vec{b}) = 0\) Therefore, we can simplify: \[ \vec{a} \cdot \vec{p} + 0 + \vec{b} \cdot \vec{q} + 0 + \vec{c} \cdot \vec{r} + 0 \] 4. **Calculating \(\vec{a} \cdot \vec{p}\), \(\vec{b} \cdot \vec{q}\), and \(\vec{c} \cdot \vec{r}\)**: Now we calculate: \[ \vec{a} \cdot \vec{p} = \frac{\vec{a} \cdot (\vec{b} \times \vec{c})}{[\vec{b}, \vec{c}, \vec{a}]} = \frac{[\vec{a}, \vec{b}, \vec{c}]}{[\vec{b}, \vec{c}, \vec{a}]} \] \[ \vec{b} \cdot \vec{q} = \frac{[\vec{b}, \vec{c}, \vec{a}]}{[\vec{c}, \vec{a}, \vec{b}]} \] \[ \vec{c} \cdot \vec{r} = \frac{[\vec{c}, \vec{a}, \vec{b}]}{[\vec{a}, \vec{b}, \vec{c}]} \] 5. **Adding the Results**: Since the determinants are cyclic, we have: \[ \frac{[\vec{a}, \vec{b}, \vec{c}]}{[\vec{b}, \vec{c}, \vec{a}]} + \frac{[\vec{b}, \vec{c}, \vec{a}]}{[\vec{c}, \vec{a}, \vec{b}]} + \frac{[\vec{c}, \vec{a}, \vec{b}]}{[\vec{a}, \vec{b}, \vec{c}]} = 1 + 1 + 1 = 3 \] ### Final Result: Thus, the value of the expression is: \[ \boxed{3} \]
Promotional Banner

Topper's Solved these Questions

  • VECTORS

    VMC MODULES ENGLISH|Exercise LEVEL -2|47 Videos
  • VECTORS

    VMC MODULES ENGLISH|Exercise Numerical ValueType for JEE Main|15 Videos
  • VECTORS

    VMC MODULES ENGLISH|Exercise JEE ADVANCED (ARCHIVE) (TRUE/ FALSE)|30 Videos
  • TRIGONOMETRIC IDENTITIES AND EQUATIONS

    VMC MODULES ENGLISH|Exercise JEE Advanced (Archive)|11 Videos

Similar Questions

Explore conceptually related problems

If vecA=(vecbxxvecc)/([vecb vecc veca]), vecB=(veccxxveca)/([vecc veca vecb]), vecC=(vecaxxvecb)/([veca vecb vecc]) find [vecA vecB vecC]

Let veca,vecb,vecc be three noncolanar vectors and vecp,vecq,vecr are vectors defined by the relations vecp= (vecbxxvecc)/([veca vecb vecc]), vecq= (veccxxveca)/([veca vecb vecc]), vecr= (vecaxxvecb)/([veca vecb vecc]) then the value of the expression (veca+vecb).vecp+(vecb+vecc).vecq+(vecc+veca).vecr . is equal to (A) 0 (B) 1 (C) 2 (D) 3

Let veca,vecb,vecc be non coplanar vectors and vecp= (vecbxxvecc)/([veca vecb vecc]), vecq= (veccxxveca)/([veca vecb vecc]), vecr= (vecaxxvecb)/([veca vecb vecc]) . What is the vaue of (veca-vecb-vecc).vecp+(vecb-vecc-veca).vecq+(vecc-veca-vecb).vecr? (A) 0 (B) -3 (C) 3 (D) -9

If veca,vecb,vecc be non coplanar vectors and vecp=(vecbxxvecc)/([veca vecb vecc]) , vecq=(veccxxveca)/([veca vecb vecc]) , vecr=(vecaxxvecb)/([veca vecb vecc]) then (A) vecp.veca=1 (B) vecp.veca+vecq.vecb+vecr.vecc=3 (C) vecp.veca+vecq.vecb+vecr.vecc=0 (D) none of these

If veca, vecb, vecc are non-coplanar vectors, then (veca.(vecb xx vecc))/(vecb.(vecc xx veca)) + (vecb.(vecc xx veca))/(vecc.(veca xx vecb)) +(vecc.(vecb xx veca))/(veca. (vecb xx vecc)) is equal to:

[ veca + vecb vecb + vecc vecc + veca ]=[ veca vecb vecc ] , then

for any three vectors, veca, vecb and vecc , (veca-vecb) . (vecb -vecc) xx (vecc -veca) =

Let veca,vecb and vecc be a set of non- coplanar vectors and veca'vecb' and vecc' be its reciprocal set. prove that veca=(vecb'xxvecc')/([veca'vecb'vecc']),vecb=(vecc'xxveca')/([veca'vecb'vecc'])andvecc=(veca'xxvecb')/([veca'vecb'vecc'])

If veca, vecb, vecc are three non-coplanar vectors, then a vector vecr satisfying vecr.veca=vecr.vecb=vecr.vecc=1 , is

If veca, vecb, vecc are any three non coplanar vectors, then (veca+vecb+vecc).(vecb+vecc)xx(vecc+veca)

VMC MODULES ENGLISH-VECTORS -LEVEL -1
  1. If veca + 2 vecb + 3 vecc = vec0 " then " veca xx vecb + vecb xx vecc...

    Text Solution

    |

  2. If veca,vecb, vecc are unit coplanar vectors then the scalar triple pr...

    Text Solution

    |

  3. veca, vecb,vecc are non-coplanar vectors and vecp,vecq,vecr are define...

    Text Solution

    |

  4. If |veca|=3, |vecb|=1, |vecc|=4 and veca + vecb + vecc= vec0, find the...

    Text Solution

    |

  5. Let vecb= 4 hati + 3hatj and vecc be two vectors perpendicular to each...

    Text Solution

    |

  6. If vecd=lambda(vecaxxvecb)+mu(vecbxxvecc)+t(veccxxveca).[veca,vecbvecc...

    Text Solution

    |

  7. Let vecb and vecc be non-collinear vectors. If veca is a vector such t...

    Text Solution

    |

  8. Let O be the centre of a regular pentagon ABCDE and vec(OA) = veca, th...

    Text Solution

    |

  9. A vector veca=(x,y,z) makes an obtuse angle with F-axis, and make equa...

    Text Solution

    |

  10. Given a parallelogram ABCD. If |AB|=a, |AD|=b, |AC|=c, then DB*AB has ...

    Text Solution

    |

  11. A, B C and D are four points in a plane with position vectors, veca, v...

    Text Solution

    |

  12. vecx and vecy are two mutually perpendicular unit vectors. If the vect...

    Text Solution

    |

  13. If non-zero vectors veca and vecb are perpendicular to each ot...

    Text Solution

    |

  14. The volume of the tetrahedron whose vertices are the points with posit...

    Text Solution

    |

  15. If veca = (hati + hatj +hatk), veca. vecb= 1 and vecaxxvecb = hatj -ha...

    Text Solution

    |

  16. ABC is isosceles triangle, right angled at A. The resultant of the for...

    Text Solution

    |

  17. If (atimesb)timesc=atimes(btimesc), where a, b and c are any three vac...

    Text Solution

    |

  18. Let veca, vecb and vecc be non-zero vectors such that no two are colli...

    Text Solution

    |

  19. If veca and vecb are mutually perpendicular unit vectors, vecris a vec...

    Text Solution

    |

  20. If V is the volume of the parallelepiped having three coterminous edge...

    Text Solution

    |