Home
Class 12
MATHS
Let vecb and vecc be non-collinear vecto...

Let `vecb` and `vecc` be non-collinear vectors. If `veca` is a vector such that `veca.(vecb + vecc)=4` and `veca xx (vecb xx vecc)=(x^(2) - 2x + 6)vecb + sin y.vecc`, then (x,y) lies on the line:

A

x+y=0

B

x-y=0

C

x=1

D

`y=pi/2`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the given problem step by step, we will use the properties of vectors and the vector triple product. ### Step 1: Understand the given equations We have two equations: 1. \(\vec{a} \cdot (\vec{b} + \vec{c}) = 4\) 2. \(\vec{a} \times (\vec{b} \times \vec{c}) = (x^2 - 2x + 6)\vec{b} + \sin y \vec{c}\) ### Step 2: Apply the vector triple product identity Using the vector triple product identity, we have: \[ \vec{a} \times (\vec{b} \times \vec{c}) = (\vec{a} \cdot \vec{c}) \vec{b} - (\vec{a} \cdot \vec{b}) \vec{c} \] Thus, we can rewrite the second equation as: \[ (\vec{a} \cdot \vec{c}) \vec{b} - (\vec{a} \cdot \vec{b}) \vec{c} = (x^2 - 2x + 6)\vec{b} + \sin y \vec{c} \] ### Step 3: Compare coefficients From the above equation, we can compare the coefficients of \(\vec{b}\) and \(\vec{c}\): 1. Coefficient of \(\vec{b}\): \(\vec{a} \cdot \vec{c} = x^2 - 2x + 6\) 2. Coefficient of \(\vec{c}\): \(-\vec{a} \cdot \vec{b} = \sin y\) ### Step 4: Use the first equation From the first equation, we can expand it: \[ \vec{a} \cdot \vec{b} + \vec{a} \cdot \vec{c} = 4 \] Substituting the values from the coefficients we found: \[ -\sin y + (x^2 - 2x + 6) = 4 \] Rearranging gives: \[ x^2 - 2x + 6 - \sin y = 4 \] This simplifies to: \[ x^2 - 2x + 2 = \sin y \] ### Step 5: Analyze the equation The left-hand side \(x^2 - 2x + 2\) is a quadratic function. To find its minimum value, we can complete the square: \[ x^2 - 2x + 2 = (x - 1)^2 + 1 \] The minimum value occurs when \((x - 1)^2 = 0\), which gives \(x = 1\). Thus, the minimum value of \(x^2 - 2x + 2\) is \(1\). ### Step 6: Relate to \(\sin y\) Since \(\sin y\) has a maximum value of \(1\), we have: \[ 1 \geq \sin y \geq 0 \] This implies: \[ 1 = \sin y \] The only angle \(y\) for which \(\sin y = 1\) is: \[ y = \frac{\pi}{2} \] ### Step 7: Conclusion Thus, we find that: \[ (x, y) = (1, \frac{\pi}{2}) \] This means that the pair \((x, y)\) lies on the line represented by the point \((1, \frac{\pi}{2})\).
Promotional Banner

Topper's Solved these Questions

  • VECTORS

    VMC MODULES ENGLISH|Exercise LEVEL -2|47 Videos
  • VECTORS

    VMC MODULES ENGLISH|Exercise Numerical ValueType for JEE Main|15 Videos
  • VECTORS

    VMC MODULES ENGLISH|Exercise JEE ADVANCED (ARCHIVE) (TRUE/ FALSE)|30 Videos
  • TRIGONOMETRIC IDENTITIES AND EQUATIONS

    VMC MODULES ENGLISH|Exercise JEE Advanced (Archive)|11 Videos

Similar Questions

Explore conceptually related problems

If veca, vecb, vecc are vectors such that veca.vecb=0 and veca + vecb = vecc then:

If veca, vecb and vecc are three non-coplanar vectors, then (veca + vecb + vecc). [(veca + vecb) xx (veca + vecc)] equals

if veca + vecb + vecc=0 , then show that veca xx vecb = vecb xx vecc = vecc xx veca .

If veca , vecb and vecc are non- coplanar vectors and veca xx vecc is perpendicular to veca xx (vecb xx vecc) , then the value of [ veca xx ( vecb xx vecc)] xx vecc is equal to

If veca, vecb, vecc are three non-zero vectors such that veca + vecb + vecc=0 and m = veca.vecb + vecb.vecc + vecc.veca , then:

If veca,vecb and vecc are non coplaner vectors such that vecbxxvecc=veca , veccxxveca=vecb and vecaxxvecb=vecc then |veca+vecb+vecc| =

vecb and vecc are non- collinear if veca xx (vecb xx vecc) + (veca .vecb) vecb = ( 4-2x- sin y) vecb + ( x^(2) -1) vecc andd (vec. vecc) veca =veca then

Let veca and vecb are vectors such that |veca|=2, |vecb|=3 and veca. vecb=4 . If vecc=(3veca xx vecb)-4vecb , then |vecc| is equal to

If veca, vecb, vecc are the unit vectors such that veca + 2vecb + 2vecc=0 , then |veca xx vecc| is equal to:

If vecb and vecc are unit vectors, then for any arbitary vector veca, (((veca xx vecb) + (veca xx vecc))xx (vecb xx vecc)) .(vecb -vecc) is always equal to

VMC MODULES ENGLISH-VECTORS -LEVEL -1
  1. Let vecb= 4 hati + 3hatj and vecc be two vectors perpendicular to each...

    Text Solution

    |

  2. If vecd=lambda(vecaxxvecb)+mu(vecbxxvecc)+t(veccxxveca).[veca,vecbvecc...

    Text Solution

    |

  3. Let vecb and vecc be non-collinear vectors. If veca is a vector such t...

    Text Solution

    |

  4. Let O be the centre of a regular pentagon ABCDE and vec(OA) = veca, th...

    Text Solution

    |

  5. A vector veca=(x,y,z) makes an obtuse angle with F-axis, and make equa...

    Text Solution

    |

  6. Given a parallelogram ABCD. If |AB|=a, |AD|=b, |AC|=c, then DB*AB has ...

    Text Solution

    |

  7. A, B C and D are four points in a plane with position vectors, veca, v...

    Text Solution

    |

  8. vecx and vecy are two mutually perpendicular unit vectors. If the vect...

    Text Solution

    |

  9. If non-zero vectors veca and vecb are perpendicular to each ot...

    Text Solution

    |

  10. The volume of the tetrahedron whose vertices are the points with posit...

    Text Solution

    |

  11. If veca = (hati + hatj +hatk), veca. vecb= 1 and vecaxxvecb = hatj -ha...

    Text Solution

    |

  12. ABC is isosceles triangle, right angled at A. The resultant of the for...

    Text Solution

    |

  13. If (atimesb)timesc=atimes(btimesc), where a, b and c are any three vac...

    Text Solution

    |

  14. Let veca, vecb and vecc be non-zero vectors such that no two are colli...

    Text Solution

    |

  15. If veca and vecb are mutually perpendicular unit vectors, vecris a vec...

    Text Solution

    |

  16. If V is the volume of the parallelepiped having three coterminous edge...

    Text Solution

    |

  17. Let G(1), G(2) and G(3) be the centroid of the triangular faces OBC, O...

    Text Solution

    |

  18. If hati, hatj, hatk are unit orthonormal vectors and veca is a vector,...

    Text Solution

    |

  19. The vector vec a has the components 2p and 1 w.r.t. a rectangular C...

    Text Solution

    |

  20. If the vectors veca=hati+ahatj+a^(2)hatk, vecb=hati+bhatj+b^(2)hatk, v...

    Text Solution

    |