Home
Class 12
MATHS
Let O be the centre of a regular pentago...

Let O be the centre of a regular pentagon ABCDE and `vec(OA) = veca`, then `vec(AB) +vec(2BC) + vec(3CD) + vec(4DE) + vec(5EA)` is equals:

A

`6veca`

B

`5veca`

C

`4veca`

D

`vec0`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to evaluate the expression \( \vec{AB} + 2\vec{BC} + 3\vec{CD} + 4\vec{DE} + 5\vec{EA} \) in terms of the vector \( \vec{OA} \) where \( O \) is the center of the regular pentagon \( ABCDE \). ### Step-by-Step Solution: 1. **Understanding the Vectors**: - Let \( \vec{OA} = \vec{a} \). - The vectors from the center \( O \) to the vertices \( A, B, C, D, E \) can be represented as \( \vec{A}, \vec{B}, \vec{C}, \vec{D}, \vec{E} \) respectively. 2. **Expressing Each Segment**: - The vector \( \vec{AB} \) can be expressed as: \[ \vec{AB} = \vec{B} - \vec{A} \] - The vector \( \vec{BC} \) can be expressed as: \[ \vec{BC} = \vec{C} - \vec{B} \] - The vector \( \vec{CD} \) can be expressed as: \[ \vec{CD} = \vec{D} - \vec{C} \] - The vector \( \vec{DE} \) can be expressed as: \[ \vec{DE} = \vec{E} - \vec{D} \] - The vector \( \vec{EA} \) can be expressed as: \[ \vec{EA} = \vec{A} - \vec{E} \] 3. **Substituting into the Expression**: - Substitute the expressions for each segment into the original equation: \[ \vec{AB} + 2\vec{BC} + 3\vec{CD} + 4\vec{DE} + 5\vec{EA} = (\vec{B} - \vec{A}) + 2(\vec{C} - \vec{B}) + 3(\vec{D} - \vec{C}) + 4(\vec{E} - \vec{D}) + 5(\vec{A} - \vec{E}) \] 4. **Combining Like Terms**: - Rearranging the terms gives: \[ = \vec{B} - \vec{A} + 2\vec{C} - 2\vec{B} + 3\vec{D} - 3\vec{C} + 4\vec{E} - 4\vec{D} + 5\vec{A} - 5\vec{E} \] - Combine the coefficients of each vector: \[ = (-\vec{A} + 5\vec{A}) + (\vec{B} - 2\vec{B}) + (2\vec{C} - 3\vec{C}) + (3\vec{D} - 4\vec{D}) + (4\vec{E} - 5\vec{E}) \] - This simplifies to: \[ = 4\vec{A} - \vec{B} - \vec{C} - \vec{D} - \vec{E} \] 5. **Using the Property of Regular Pentagon**: - In a regular pentagon, the sum of the position vectors of the vertices from the center is zero: \[ \vec{A} + \vec{B} + \vec{C} + \vec{D} + \vec{E} = 0 \] - Therefore, \( \vec{B} + \vec{C} + \vec{D} + \vec{E} = -\vec{A} \). 6. **Final Simplification**: - Substitute this back into our expression: \[ = 4\vec{A} - (-\vec{A}) = 4\vec{A} + \vec{A} = 5\vec{A} \] ### Conclusion: Thus, we conclude that: \[ \vec{AB} + 2\vec{BC} + 3\vec{CD} + 4\vec{DE} + 5\vec{EA} = 5\vec{A} \]
Promotional Banner

Topper's Solved these Questions

  • VECTORS

    VMC MODULES ENGLISH|Exercise LEVEL -2|47 Videos
  • VECTORS

    VMC MODULES ENGLISH|Exercise Numerical ValueType for JEE Main|15 Videos
  • VECTORS

    VMC MODULES ENGLISH|Exercise JEE ADVANCED (ARCHIVE) (TRUE/ FALSE)|30 Videos
  • TRIGONOMETRIC IDENTITIES AND EQUATIONS

    VMC MODULES ENGLISH|Exercise JEE Advanced (Archive)|11 Videos

Similar Questions

Explore conceptually related problems

If ABCDE is a pentagon, then vec(AB) + vec(AE) + vec(BC) + vec(DC) + vec(ED) + vec(AC) is equal to

Let O be the centre of the regular hexagon ABCDEF then find vec(OA)+vec(OB)+vec(OD)+vec(OC)+vec(OE)+vec(OF)

If ABCD is a quadrilateral, then vec(BA) + vec(BC)+vec(CD) + vec(DA)=

Let O be the centre of a regular hexagon A B C D E F . Find the sum of the vectors vec O A , vec O B , vec O C , vec O D , vec O Ea n d vec O F .

If ABCDEF is a regular hexagon with vec(AB) = veca and vec(BC)= vecb, then vec(CE) equals

Let G be the centroid of Delta ABC , If vec(AB) = vec a , vec(AC) = vec b, then the vec(AG), in terms of vec a and vec b, is

In a regular hexagon ABCDEF, prove that vec(AB)+vec(AC)+vec(AD)+vec(AE)+vec(AF)=3vec(AD)

If OACB is a parallelogrma with vec( OC) = vec(a) and vec( AB) = vec(b) then vec(OA) is equal to

If ABCD is a rhombus whose diagonals intersect at E, then vec(EA) + vec(EB) + vec(EC) + vec( ED) equals

Assertion ABCDEF is a regular hexagon and vec(AB)=veca,vec(BC)=vecb and vec(CD)=vecc, then vec(EA) is equal to -(vecb+vecc) , Reason: vec(AE)=vec(BD)=vec(BC)+vec(CD) (A) Both A and R are true and R is the correct explanation of A (B) Both A and R are true R is not te correct explanation of A (C) A is true but R is false. (D) A is false but R is true.

VMC MODULES ENGLISH-VECTORS -LEVEL -1
  1. If vecd=lambda(vecaxxvecb)+mu(vecbxxvecc)+t(veccxxveca).[veca,vecbvecc...

    Text Solution

    |

  2. Let vecb and vecc be non-collinear vectors. If veca is a vector such t...

    Text Solution

    |

  3. Let O be the centre of a regular pentagon ABCDE and vec(OA) = veca, th...

    Text Solution

    |

  4. A vector veca=(x,y,z) makes an obtuse angle with F-axis, and make equa...

    Text Solution

    |

  5. Given a parallelogram ABCD. If |AB|=a, |AD|=b, |AC|=c, then DB*AB has ...

    Text Solution

    |

  6. A, B C and D are four points in a plane with position vectors, veca, v...

    Text Solution

    |

  7. vecx and vecy are two mutually perpendicular unit vectors. If the vect...

    Text Solution

    |

  8. If non-zero vectors veca and vecb are perpendicular to each ot...

    Text Solution

    |

  9. The volume of the tetrahedron whose vertices are the points with posit...

    Text Solution

    |

  10. If veca = (hati + hatj +hatk), veca. vecb= 1 and vecaxxvecb = hatj -ha...

    Text Solution

    |

  11. ABC is isosceles triangle, right angled at A. The resultant of the for...

    Text Solution

    |

  12. If (atimesb)timesc=atimes(btimesc), where a, b and c are any three vac...

    Text Solution

    |

  13. Let veca, vecb and vecc be non-zero vectors such that no two are colli...

    Text Solution

    |

  14. If veca and vecb are mutually perpendicular unit vectors, vecris a vec...

    Text Solution

    |

  15. If V is the volume of the parallelepiped having three coterminous edge...

    Text Solution

    |

  16. Let G(1), G(2) and G(3) be the centroid of the triangular faces OBC, O...

    Text Solution

    |

  17. If hati, hatj, hatk are unit orthonormal vectors and veca is a vector,...

    Text Solution

    |

  18. The vector vec a has the components 2p and 1 w.r.t. a rectangular C...

    Text Solution

    |

  19. If the vectors veca=hati+ahatj+a^(2)hatk, vecb=hati+bhatj+b^(2)hatk, v...

    Text Solution

    |

  20. If veca =hati + hatj, vecb = hati - hatj + hatk and vecc is a unit vec...

    Text Solution

    |