Home
Class 12
MATHS
If veca and vecb are mutually perpendicu...

If `veca` and `vecb` are mutually perpendicular unit vectors, `vecr`is a vector satisfying `vecr.veca =0, vecr.vecb=1` and `(vecr veca vecb)=1`, then `vecr` is:

A

`veca + (veca xx vecb)`

B

`vecb +(veca xx vecb)`

C

`veca + (veca xx vecb)`

D

`veca - vecb+(veca xx vecb)`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to find the vector \(\vec{r}\) given the conditions involving the unit vectors \(\vec{a}\) and \(\vec{b}\). Let's break down the solution step by step. ### Step 1: Understand the Given Information We are given: 1. \(\vec{a}\) and \(\vec{b}\) are mutually perpendicular unit vectors. 2. \(\vec{r} \cdot \vec{a} = 0\) 3. \(\vec{r} \cdot \vec{b} = 1\) 4. \((\vec{r} \times \vec{a} \times \vec{b}) = 1\) ### Step 2: Express \(\vec{r}\) in Terms of \(\vec{a}\), \(\vec{b}\), and \(\vec{a} \times \vec{b}\) Since \(\vec{a}\) and \(\vec{b}\) are mutually perpendicular unit vectors, we can express \(\vec{r}\) as: \[ \vec{r} = x_1 \vec{a} + x_2 \vec{b} + x_3 (\vec{a} \times \vec{b}) \] where \(x_1\), \(x_2\), and \(x_3\) are scalars to be determined. ### Step 3: Use the Condition \(\vec{r} \cdot \vec{a} = 0\) Calculating the dot product: \[ \vec{r} \cdot \vec{a} = (x_1 \vec{a} + x_2 \vec{b} + x_3 (\vec{a} \times \vec{b})) \cdot \vec{a} \] This simplifies to: \[ x_1 (\vec{a} \cdot \vec{a}) + x_2 (\vec{b} \cdot \vec{a}) + x_3 ((\vec{a} \times \vec{b}) \cdot \vec{a}) = 0 \] Since \(\vec{a} \cdot \vec{a} = 1\), \(\vec{b} \cdot \vec{a} = 0\), and \((\vec{a} \times \vec{b}) \cdot \vec{a} = 0\), we have: \[ x_1 = 0 \] ### Step 4: Use the Condition \(\vec{r} \cdot \vec{b} = 1\) Now, substituting \(x_1 = 0\): \[ \vec{r} \cdot \vec{b} = (0 \cdot \vec{a} + x_2 \vec{b} + x_3 (\vec{a} \times \vec{b})) \cdot \vec{b} \] This simplifies to: \[ x_2 (\vec{b} \cdot \vec{b}) + x_3 ((\vec{a} \times \vec{b}) \cdot \vec{b}) = 1 \] Since \(\vec{b} \cdot \vec{b} = 1\) and \((\vec{a} \times \vec{b}) \cdot \vec{b} = 0\), we have: \[ x_2 = 1 \] ### Step 5: Use the Condition \((\vec{r} \times \vec{a} \times \vec{b}) = 1\) Now we need to evaluate: \[ \vec{r} \times \vec{a} \times \vec{b} = (0 \cdot \vec{a} + 1 \cdot \vec{b} + x_3 (\vec{a} \times \vec{b})) \times \vec{a} \] This simplifies to: \[ \vec{b} \times \vec{a} + x_3 ((\vec{a} \times \vec{b}) \times \vec{a}) \] Using the vector triple product identity, we have: \[ (\vec{a} \times \vec{b}) \times \vec{a} = -\vec{b} \] Thus, we get: \[ \vec{b} \times \vec{a} - x_3 \vec{b} = 1 \] Since \(\vec{b} \times \vec{a} = -\vec{a} \times \vec{b}\), we can set the magnitude: \[ 1 - x_3 = 1 \implies x_3 = 0 \] ### Step 6: Final Expression for \(\vec{r}\) Substituting \(x_1 = 0\), \(x_2 = 1\), and \(x_3 = 0\) into the expression for \(\vec{r}\): \[ \vec{r} = 0 \cdot \vec{a} + 1 \cdot \vec{b} + 0 \cdot (\vec{a} \times \vec{b}) = \vec{b} \] ### Conclusion Thus, the vector \(\vec{r}\) is: \[ \vec{r} = \vec{b} \]
Promotional Banner

Topper's Solved these Questions

  • VECTORS

    VMC MODULES ENGLISH|Exercise LEVEL -2|47 Videos
  • VECTORS

    VMC MODULES ENGLISH|Exercise Numerical ValueType for JEE Main|15 Videos
  • VECTORS

    VMC MODULES ENGLISH|Exercise JEE ADVANCED (ARCHIVE) (TRUE/ FALSE)|30 Videos
  • TRIGONOMETRIC IDENTITIES AND EQUATIONS

    VMC MODULES ENGLISH|Exercise JEE Advanced (Archive)|11 Videos

Similar Questions

Explore conceptually related problems

If veca, vecb, vecc are three non-coplanar vectors, then a vector vecr satisfying vecr.veca=vecr.vecb=vecr.vecc=1 , is

If veca,vecb and vecc are three mutually perpendicular unit vectors then (vecr.veca)veca+(vecr.vecb)vecb+(vecr.vecc)vecc= (A) ([veca vecb vecc]vecr)/2 (B) vecr (C) 2[veca vecb vecc] (D) none of these

Let veca and vecb be two non- zero perpendicular vectors. A vector vecr satisfying the equation vecr xx vecb = veca can be

If veca and vecb are two given vectors and k is any scalar,then find the vector vecr satisfying vecr xx veca +k vecr=vecb .

Find vector vecr if vecr.veca=m and vecrxxvecb=vecc, where veca.vecb!=0

A vectors vecr satisfies the equations vecr xx veca=vecb and vecr*veca=0 . Then

If vecb is not perpendicular to vecc . Then find the vector vecr satisfying the equation vecr xx vecb = veca xx vecb and vecr. vecc=0

If vecb is not perpendicular to vecc . Then find the vector vecr satisfying the equation vecr xx vecb = veca xx vecb and vecr. vecc=0

If veca is perpendicular to vecb and vecr is a non-zero vector such that pvecr + (vecr.vecb)veca=vecc , then vecr is:

If veca,vecb and vecc are non coplnar and non zero vectors and vecr is any vector in space then [vecc vecr vecb]veca+[veca vecr vecc] vecb+[vecb vecr veca]c= (A) [veca vecb vecc] (B) [veca vecb vecc]vecr (C) vecr/([veca vecb vecc]) (D) vecr.(veca+vecb+vecc)

VMC MODULES ENGLISH-VECTORS -LEVEL -1
  1. If (atimesb)timesc=atimes(btimesc), where a, b and c are any three vac...

    Text Solution

    |

  2. Let veca, vecb and vecc be non-zero vectors such that no two are colli...

    Text Solution

    |

  3. If veca and vecb are mutually perpendicular unit vectors, vecris a vec...

    Text Solution

    |

  4. If V is the volume of the parallelepiped having three coterminous edge...

    Text Solution

    |

  5. Let G(1), G(2) and G(3) be the centroid of the triangular faces OBC, O...

    Text Solution

    |

  6. If hati, hatj, hatk are unit orthonormal vectors and veca is a vector,...

    Text Solution

    |

  7. The vector vec a has the components 2p and 1 w.r.t. a rectangular C...

    Text Solution

    |

  8. If the vectors veca=hati+ahatj+a^(2)hatk, vecb=hati+bhatj+b^(2)hatk, v...

    Text Solution

    |

  9. If veca =hati + hatj, vecb = hati - hatj + hatk and vecc is a unit vec...

    Text Solution

    |

  10. If the vectors veca and vecb are mutually perpendicular, then veca xx ...

    Text Solution

    |

  11. If veca is perpendicular to vecb and vecr is a non-zero vector such th...

    Text Solution

    |

  12. Let veca=hati-hatj, vecb=hatj-hatk, vecc=hatk-hati. If hatd is a unit ...

    Text Solution

    |

  13. Given that veca,vecc,vecd are coplanar the value of (veca + vecd).{vec...

    Text Solution

    |

  14. let veca , vecb and vecc be three vectors having magnitudes 1, 1 and 2...

    Text Solution

    |

  15. If A(1,-1,-3),B(2,1,-2) and C(-5,2,-6) are the position vectors of the...

    Text Solution

    |

  16. If |{:(veca,vecb,vecc),(veca.veca,veca.vecb,veca.vecc),(veca.vecc,vecb...

    Text Solution

    |

  17. Let vec(A)D be the angle bisector of angle A" of " Delta ABC such th...

    Text Solution

    |

  18. Let veca = 2hati + hatj + hatk, and vecb = hati+ hatj if c is a vecto...

    Text Solution

    |

  19. If veca and vecb are two unit vectors and theta is the angle between t...

    Text Solution

    |

  20. If veca + 2 vecb + 3 vecc = vec0 " then " veca xx vecb + vecb xx vecc...

    Text Solution

    |