Home
Class 12
MATHS
If veca =hati + hatj, vecb = hati - hatj...

If `veca =hati + hatj, vecb = hati - hatj + hatk` and `vecc` is a unit vector `bot` to the vector `veca` and coplanar with `veca` and `vecb`, then a unit vector `vecd` is perpendicular to both `veca` and `vecc` is:

A

`1/sqrt(6)(2hati - hatj + hatk)`

B

`1/sqrt(6)(hati - 2hatj - 2hatk)`

C

`1/sqrt(2)(hati + hatj)`

D

`1/sqrt(2)(hati + hatk)`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem step by step, we need to find the unit vector \( \vec{c} \) that is perpendicular to \( \vec{a} \) and coplanar with \( \vec{a} \) and \( \vec{b} \), and then find the unit vector \( \vec{d} \) that is perpendicular to both \( \vec{a} \) and \( \vec{c} \). ### Step 1: Define the vectors Given: \[ \vec{a} = \hat{i} + \hat{j} \] \[ \vec{b} = \hat{i} - \hat{j} + \hat{k} \] ### Step 2: Assume the form of vector \( \vec{c} \) Let: \[ \vec{c} = x \hat{i} + y \hat{j} + z \hat{k} \] Since \( \vec{c} \) is perpendicular to \( \vec{a} \), we have: \[ \vec{c} \cdot \vec{a} = 0 \] This gives us: \[ x + y = 0 \quad \text{(1)} \] From equation (1), we can express \( y \) in terms of \( x \): \[ y = -x \] ### Step 3: Check coplanarity with \( \vec{a} \) and \( \vec{b} \) The condition for coplanarity is that the scalar triple product \( \vec{c}, \vec{a}, \vec{b} \) must be zero: \[ \vec{c} \cdot (\vec{a} \times \vec{b}) = 0 \] ### Step 4: Calculate \( \vec{a} \times \vec{b} \) Using the determinant method: \[ \vec{a} \times \vec{b} = \begin{vmatrix} \hat{i} & \hat{j} & \hat{k} \\ 1 & 1 & 0 \\ 1 & -1 & 1 \end{vmatrix} \] Calculating the determinant: \[ = \hat{i} \begin{vmatrix} 1 & 0 \\ -1 & 1 \end{vmatrix} - \hat{j} \begin{vmatrix} 1 & 0 \\ 1 & 1 \end{vmatrix} + \hat{k} \begin{vmatrix} 1 & 1 \\ 1 & -1 \end{vmatrix} \] \[ = \hat{i} (1 - 0) - \hat{j} (1 - 0) + \hat{k} (-1 - 1) \] \[ = \hat{i} - \hat{j} - 2\hat{k} \] Thus: \[ \vec{a} \times \vec{b} = \hat{i} - \hat{j} - 2\hat{k} \] ### Step 5: Set up the equation for \( \vec{c} \) Now we have: \[ \vec{c} \cdot (\hat{i} - \hat{j} - 2\hat{k}) = 0 \] Substituting \( \vec{c} = x \hat{i} - x \hat{j} + z \hat{k} \): \[ x - (-x) - 2z = 0 \] This simplifies to: \[ 2x - 2z = 0 \quad \text{(2)} \] From equation (2): \[ x = z \] ### Step 6: Express \( \vec{c} \) Now substituting \( z = x \) into \( \vec{c} \): \[ \vec{c} = x \hat{i} - x \hat{j} + x \hat{k} = x (\hat{i} - \hat{j} + \hat{k}) \] ### Step 7: Normalize \( \vec{c} \) To make \( \vec{c} \) a unit vector: \[ \|\vec{c}\| = 1 \Rightarrow x \sqrt{1^2 + (-1)^2 + 1^2} = 1 \] \[ x \sqrt{3} = 1 \Rightarrow x = \frac{1}{\sqrt{3}} \] Thus: \[ \vec{c} = \frac{1}{\sqrt{3}} (\hat{i} - \hat{j} + \hat{k}) \] ### Step 8: Find \( \vec{d} \) Now, \( \vec{d} \) is perpendicular to both \( \vec{a} \) and \( \vec{c} \), so: \[ \vec{d} \parallel \vec{a} \times \vec{c} \] Calculating \( \vec{a} \times \vec{c} \): \[ \vec{a} \times \vec{c} = \begin{vmatrix} \hat{i} & \hat{j} & \hat{k} \\ 1 & 1 & 0 \\ \frac{1}{\sqrt{3}} & -\frac{1}{\sqrt{3}} & \frac{1}{\sqrt{3}} \end{vmatrix} \] Calculating the determinant: \[ = \hat{i} \begin{vmatrix} 1 & 0 \\ -\frac{1}{\sqrt{3}} & \frac{1}{\sqrt{3}} \end{vmatrix} - \hat{j} \begin{vmatrix} 1 & 0 \\ \frac{1}{\sqrt{3}} & \frac{1}{\sqrt{3}} \end{vmatrix} + \hat{k} \begin{vmatrix} 1 & 1 \\ \frac{1}{\sqrt{3}} & -\frac{1}{\sqrt{3}} \end{vmatrix} \] Calculating each determinant: \[ = \hat{i} \left( \frac{1}{\sqrt{3}} \right) - \hat{j} \left( \frac{1}{\sqrt{3}} \right) + \hat{k} \left( -\frac{1}{\sqrt{3}} - \frac{1}{\sqrt{3}} \right) \] \[ = \frac{1}{\sqrt{3}} \hat{i} - \frac{1}{\sqrt{3}} \hat{j} - \frac{2}{\sqrt{3}} \hat{k} \] ### Step 9: Normalize \( \vec{d} \) Let \( \vec{d} = \lambda \left( \frac{1}{\sqrt{3}} \hat{i} - \frac{1}{\sqrt{3}} \hat{j} - \frac{2}{\sqrt{3}} \hat{k} \right) \) and set its magnitude to 1: \[ \|\vec{d}\| = \lambda \sqrt{\left( \frac{1}{\sqrt{3}} \right)^2 + \left( -\frac{1}{\sqrt{3}} \right)^2 + \left( -\frac{2}{\sqrt{3}} \right)^2} = 1 \] \[ \lambda \sqrt{\frac{1}{3} + \frac{1}{3} + \frac{4}{3}} = 1 \] \[ \lambda \sqrt{2} = 1 \Rightarrow \lambda = \frac{1}{\sqrt{2}} \] Thus: \[ \vec{d} = \frac{1}{\sqrt{2}} \left( \frac{1}{\sqrt{3}} \hat{i} - \frac{1}{\sqrt{3}} \hat{j} - \frac{2}{\sqrt{3}} \hat{k} \right) \] This simplifies to: \[ \vec{d} = \frac{1}{\sqrt{6}} \hat{i} - \frac{1}{\sqrt{6}} \hat{j} - \frac{2}{\sqrt{6}} \hat{k} \] ### Final Answer The unit vector \( \vec{d} \) that is perpendicular to both \( \vec{a} \) and \( \vec{c} \) is: \[ \vec{d} = \frac{1}{\sqrt{6}} \hat{i} - \frac{1}{\sqrt{6}} \hat{j} - \frac{2}{\sqrt{6}} \hat{k} \]
Promotional Banner

Topper's Solved these Questions

  • VECTORS

    VMC MODULES ENGLISH|Exercise LEVEL -2|47 Videos
  • VECTORS

    VMC MODULES ENGLISH|Exercise Numerical ValueType for JEE Main|15 Videos
  • VECTORS

    VMC MODULES ENGLISH|Exercise JEE ADVANCED (ARCHIVE) (TRUE/ FALSE)|30 Videos
  • TRIGONOMETRIC IDENTITIES AND EQUATIONS

    VMC MODULES ENGLISH|Exercise JEE Advanced (Archive)|11 Videos

Similar Questions

Explore conceptually related problems

Let veca=hati+hatj-hatk, vecb=hati-hatj+hatk and vecc be a unit vector perpendicular to veca and coplanar with veca and vecb , then it is given by

If veca =hati + hatj-hatk, vecb = - hati + 2hatj + 2hatk and vecc = - hati +2hatj -hatk , then a unit vector normal to the vectors veca + vecb and vecb -vecc , is

If veca=hati+hatj+hatk, vecb=2hati-hatj+3hatk and vecc=hati-2hatj+hatk find a unit vector parallel to ther vector 2veca-vecb+3c .

If veca=hati+hatj, vecb=hatj+hatk, vec c hatk+hati , a unit vector parallel to veca+vecb+vecc .

If veca=hati+2hatj-hatk and vecb=3hati+hatj-hatk find a unit vector int direction of veca-vecb .

If vecA= 3hati+2hatj and vecB= 2hati+ 3hatj-hatk , then find a unit vector along (vecA-vecB) .

Let veca=hati+hatj+hatk, vecb=hati-hatj+hat2k and vecc=xhati+(x-2)hatj-hatk . If the vector vecc lies in the plane of veca and vecb then x equals

If veca = (-hati + hatj - hatk) and vecb = (2hati- 2hatj + 2hatk) then find the unit vector in the direction of (veca + vecb) .

If two vectors are given as veca = hati - hatj + 2hatk and vecb = hati + 2hatj+hatk , the unit vector perpendicular to both vec a and vec b is

If veca=hati+hatj + hatk and vecb = hati - 2 hatj+hatk then find the vector vecc such that veca.vecc =2 and veca xx vecc=vecb .

VMC MODULES ENGLISH-VECTORS -LEVEL -1
  1. The vector vec a has the components 2p and 1 w.r.t. a rectangular C...

    Text Solution

    |

  2. If the vectors veca=hati+ahatj+a^(2)hatk, vecb=hati+bhatj+b^(2)hatk, v...

    Text Solution

    |

  3. If veca =hati + hatj, vecb = hati - hatj + hatk and vecc is a unit vec...

    Text Solution

    |

  4. If the vectors veca and vecb are mutually perpendicular, then veca xx ...

    Text Solution

    |

  5. If veca is perpendicular to vecb and vecr is a non-zero vector such th...

    Text Solution

    |

  6. Let veca=hati-hatj, vecb=hatj-hatk, vecc=hatk-hati. If hatd is a unit ...

    Text Solution

    |

  7. Given that veca,vecc,vecd are coplanar the value of (veca + vecd).{vec...

    Text Solution

    |

  8. let veca , vecb and vecc be three vectors having magnitudes 1, 1 and 2...

    Text Solution

    |

  9. If A(1,-1,-3),B(2,1,-2) and C(-5,2,-6) are the position vectors of the...

    Text Solution

    |

  10. If |{:(veca,vecb,vecc),(veca.veca,veca.vecb,veca.vecc),(veca.vecc,vecb...

    Text Solution

    |

  11. Let vec(A)D be the angle bisector of angle A" of " Delta ABC such th...

    Text Solution

    |

  12. Let veca = 2hati + hatj + hatk, and vecb = hati+ hatj if c is a vecto...

    Text Solution

    |

  13. If veca and vecb are two unit vectors and theta is the angle between t...

    Text Solution

    |

  14. If veca + 2 vecb + 3 vecc = vec0 " then " veca xx vecb + vecb xx vecc...

    Text Solution

    |

  15. If veca,vecb,vecc and vecp,vecq,vecr are reciprocal system of vectors,...

    Text Solution

    |

  16. For any four vectors veca, vecb, vecc, vecd the expressions (vecb xx v...

    Text Solution

    |

  17. If veca xx (vec b xx vecc) is perpendicular to (veca xx vecb ) xx vecc...

    Text Solution

    |

  18. The three vectors hat i+hat j,hat j+hat k, hat k+hat i taken two at a ...

    Text Solution

    |

  19. Let p and q be the position vectors of P and Q respectively with respe...

    Text Solution

    |

  20. If in a right-angled triangle A B C , the hypotenuse A B=p ,t h e n...

    Text Solution

    |