Home
Class 12
MATHS
Given that veca,vecc,vecd are coplanar t...

Given that `veca,vecc,vecd` are coplanar the value of `(veca + vecd).{veca xx [vecb xx (vecc xx veca)]}` is:

A

`-2`

B

0

C

2

D

None of these

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to evaluate the expression \((\vec{a} + \vec{d}) \cdot (\vec{a} \times [\vec{b} \times (\vec{c} \times \vec{a})])\) given that the vectors \(\vec{a}\), \(\vec{c}\), and \(\vec{d}\) are coplanar. ### Step-by-Step Solution: 1. **Understanding Coplanarity**: Since vectors \(\vec{a}\), \(\vec{c}\), and \(\vec{d}\) are coplanar, we know that the scalar triple product of these vectors is zero: \[ \vec{a} \cdot (\vec{c} \times \vec{d}) = 0. \] 2. **Using Vector Triple Product Identity**: We can simplify the expression \(\vec{b} \times (\vec{c} \times \vec{a})\) using the vector triple product identity: \[ \vec{b} \times (\vec{c} \times \vec{a}) = (\vec{b} \cdot \vec{a}) \vec{c} - (\vec{b} \cdot \vec{c}) \vec{a}. \] 3. **Substituting Back**: Substitute this result back into the original expression: \[ (\vec{a} + \vec{d}) \cdot (\vec{a} \times [(\vec{b} \cdot \vec{a}) \vec{c} - (\vec{b} \cdot \vec{c}) \vec{a}]). \] 4. **Distributing the Dot Product**: Now we distribute the dot product: \[ = (\vec{a} + \vec{d}) \cdot \left((\vec{b} \cdot \vec{a}) (\vec{a} \times \vec{c}) - (\vec{b} \cdot \vec{c}) (\vec{a} \times \vec{a})\right). \] 5. **Evaluating Cross Product**: We know that \(\vec{a} \times \vec{a} = \vec{0}\) (the zero vector), so the second term becomes zero: \[ = (\vec{a} + \vec{d}) \cdot \left((\vec{b} \cdot \vec{a}) (\vec{a} \times \vec{c})\right). \] 6. **Factoring Out Scalar**: Since \((\vec{b} \cdot \vec{a})\) is a scalar, we can factor it out: \[ = (\vec{b} \cdot \vec{a}) \left((\vec{a} + \vec{d}) \cdot (\vec{a} \times \vec{c})\right). \] 7. **Evaluating the Dot Product**: Now, we evaluate \((\vec{a} + \vec{d}) \cdot (\vec{a} \times \vec{c})\). Since \(\vec{a} \times \vec{c}\) is perpendicular to both \(\vec{a}\) and \(\vec{c}\), the dot product with \(\vec{a}\) is zero: \[ (\vec{a} + \vec{d}) \cdot (\vec{a} \times \vec{c}) = \vec{a} \cdot (\vec{a} \times \vec{c}) + \vec{d} \cdot (\vec{a} \times \vec{c}) = 0 + \vec{d} \cdot (\vec{a} \times \vec{c}). \] 8. **Final Result**: Since \(\vec{a}, \vec{c}, \vec{d}\) are coplanar, \(\vec{d} \cdot (\vec{a} \times \vec{c}) = 0\). Therefore: \[ = (\vec{b} \cdot \vec{a}) \cdot 0 = 0. \] Thus, the final answer is: \[ \boxed{0}. \]
Promotional Banner

Topper's Solved these Questions

  • VECTORS

    VMC MODULES ENGLISH|Exercise LEVEL -2|47 Videos
  • VECTORS

    VMC MODULES ENGLISH|Exercise Numerical ValueType for JEE Main|15 Videos
  • VECTORS

    VMC MODULES ENGLISH|Exercise JEE ADVANCED (ARCHIVE) (TRUE/ FALSE)|30 Videos
  • TRIGONOMETRIC IDENTITIES AND EQUATIONS

    VMC MODULES ENGLISH|Exercise JEE Advanced (Archive)|11 Videos

Similar Questions

Explore conceptually related problems

If vectors, vecb, vecc and vecd are not coplanar, the prove that vector (veca xx vecb) xx (vecc xx vecd) + ( veca xx vecc) xx (vecd xx vecb) + (veca xx vecd) xx (vecb xx vecc) is parallel to veca .

Statement 1: veca, vecb and vecc arwe three mutually perpendicular unit vectors and vecd is a vector such that veca, vecb, vecc and vecd are non- coplanar. If [vecd vecb vecc] = [vecdvecavecb] = [vecdvecc veca] = 1, " then " vecd= veca+vecb+vecc Statement 2: [vecd vecb vecc] = [vecd veca vecb] = [vecdveccveca] Rightarrow vecd is equally inclined to veca, vecb and vecc .

The value of veca.(vecb+vecc)xx(veca+vecb+vecc) , is

If the vectors veca, vecb, vecc, vecd are coplanar show that (vecaxxvecb)xx(veccxxvecd)=vec0

Let veca, vecb and vecc are three unit vectors in a plane such that they are equally inclined to each other, then the value of (veca xx vecb).(vecb xx vecc) + (vecb xx vecc). (vecc xx veca)+(vecc xx veca). (veca xx vecb) can be

If veca, vecb and vecc are three non-coplanar vectors, then (veca + vecb + vecc). [(veca + vecb) xx (veca + vecc)] equals

If the vectors veca, vecb, vecc and vecd are coplanar vectors, then (vecaxxvecb)xx(veccxxvecd) is equal to

For any four vectors veca, vecb, vecc, vecd the expressions (vecb xx vecc).(veca xx vecd) +(vecc xx veca).(vecb xx vecd)+(veca xx vecb).(vecc xx vecd) is always equal to:

If veca, vecb, vecc are non-coplanar vectors, then (veca.(vecb xx vecc))/(vecb.(vecc xx veca)) + (vecb.(vecc xx veca))/(vecc.(veca xx vecb)) +(vecc.(vecb xx veca))/(veca. (vecb xx vecc)) is equal to:

If veca, vecb and vecc are three non - zero and non - coplanar vectors such that [(veca,vecb,vecc)]=4 , then the value of (veca+3vecb-vecc).((veca-vecb)xx(veca-2vecb-3vecc)) equal to

VMC MODULES ENGLISH-VECTORS -LEVEL -1
  1. The vector vec a has the components 2p and 1 w.r.t. a rectangular C...

    Text Solution

    |

  2. If the vectors veca=hati+ahatj+a^(2)hatk, vecb=hati+bhatj+b^(2)hatk, v...

    Text Solution

    |

  3. If veca =hati + hatj, vecb = hati - hatj + hatk and vecc is a unit vec...

    Text Solution

    |

  4. If the vectors veca and vecb are mutually perpendicular, then veca xx ...

    Text Solution

    |

  5. If veca is perpendicular to vecb and vecr is a non-zero vector such th...

    Text Solution

    |

  6. Let veca=hati-hatj, vecb=hatj-hatk, vecc=hatk-hati. If hatd is a unit ...

    Text Solution

    |

  7. Given that veca,vecc,vecd are coplanar the value of (veca + vecd).{vec...

    Text Solution

    |

  8. let veca , vecb and vecc be three vectors having magnitudes 1, 1 and 2...

    Text Solution

    |

  9. If A(1,-1,-3),B(2,1,-2) and C(-5,2,-6) are the position vectors of the...

    Text Solution

    |

  10. If |{:(veca,vecb,vecc),(veca.veca,veca.vecb,veca.vecc),(veca.vecc,vecb...

    Text Solution

    |

  11. Let vec(A)D be the angle bisector of angle A" of " Delta ABC such th...

    Text Solution

    |

  12. Let veca = 2hati + hatj + hatk, and vecb = hati+ hatj if c is a vecto...

    Text Solution

    |

  13. If veca and vecb are two unit vectors and theta is the angle between t...

    Text Solution

    |

  14. If veca + 2 vecb + 3 vecc = vec0 " then " veca xx vecb + vecb xx vecc...

    Text Solution

    |

  15. If veca,vecb,vecc and vecp,vecq,vecr are reciprocal system of vectors,...

    Text Solution

    |

  16. For any four vectors veca, vecb, vecc, vecd the expressions (vecb xx v...

    Text Solution

    |

  17. If veca xx (vec b xx vecc) is perpendicular to (veca xx vecb ) xx vecc...

    Text Solution

    |

  18. The three vectors hat i+hat j,hat j+hat k, hat k+hat i taken two at a ...

    Text Solution

    |

  19. Let p and q be the position vectors of P and Q respectively with respe...

    Text Solution

    |

  20. If in a right-angled triangle A B C , the hypotenuse A B=p ,t h e n...

    Text Solution

    |