Home
Class 12
MATHS
If |{:(veca,vecb,vecc),(veca.veca,veca.v...

If `|{:(veca,vecb,vecc),(veca.veca,veca.vecb,veca.vecc),(veca.vecc,vecb.vecc,veca.vecc)|` where `veca, vecb,vecc` are coplanar then:

A

`vec(Delta) = vec0`

B

`vecDelta = veca + vecb + vecc`

C

`vecDelta` = any non-zero vectors

D

None of these

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to evaluate the determinant given by: \[ \Delta = \begin{vmatrix} \vec{a} & \vec{b} & \vec{c} \\ \vec{a} \cdot \vec{a} & \vec{a} \cdot \vec{b} & \vec{a} \cdot \vec{c} \\ \vec{b} \cdot \vec{c} & \vec{c} \cdot \vec{c} & \vec{a} \cdot \vec{c} \end{vmatrix} \] Given that \(\vec{a}, \vec{b}, \vec{c}\) are coplanar, we need to show that the determinant equals zero. ### Step 1: Set Up the Vectors Assume: - \(\vec{a} = \hat{i}\) - \(\vec{b} = 2\hat{i}\) - \(\vec{c} = 3\hat{i}\) ### Step 2: Calculate the Dot Products Now, we compute the dot products: - \(\vec{a} \cdot \vec{a} = \hat{i} \cdot \hat{i} = 1\) - \(\vec{a} \cdot \vec{b} = \hat{i} \cdot (2\hat{i}) = 2\) - \(\vec{a} \cdot \vec{c} = \hat{i} \cdot (3\hat{i}) = 3\) - \(\vec{b} \cdot \vec{c} = (2\hat{i}) \cdot (3\hat{i}) = 6\) - \(\vec{c} \cdot \vec{c} = (3\hat{i}) \cdot (3\hat{i}) = 9\) ### Step 3: Substitute into the Determinant Now substitute these values into the determinant: \[ \Delta = \begin{vmatrix} \hat{i} & 2\hat{i} & 3\hat{i} \\ 1 & 2 & 3 \\ 6 & 9 & 3 \end{vmatrix} \] ### Step 4: Calculate the Determinant We can calculate the determinant using the formula for a 3x3 matrix: \[ \Delta = \hat{i} \begin{vmatrix} 2 & 3 \\ 9 & 3 \end{vmatrix} - 2\hat{i} \begin{vmatrix} 1 & 3 \\ 6 & 3 \end{vmatrix} + 3\hat{i} \begin{vmatrix} 1 & 2 \\ 6 & 9 \end{vmatrix} \] Calculating each of the 2x2 determinants: 1. \(\begin{vmatrix} 2 & 3 \\ 9 & 3 \end{vmatrix} = (2)(3) - (3)(9) = 6 - 27 = -21\) 2. \(\begin{vmatrix} 1 & 3 \\ 6 & 3 \end{vmatrix} = (1)(3) - (3)(6) = 3 - 18 = -15\) 3. \(\begin{vmatrix} 1 & 2 \\ 6 & 9 \end{vmatrix} = (1)(9) - (2)(6) = 9 - 12 = -3\) Now substituting back into the determinant: \[ \Delta = \hat{i}(-21) - 2\hat{i}(-15) + 3\hat{i}(-3) \] \[ = -21\hat{i} + 30\hat{i} - 9\hat{i} \] \[ = (-21 + 30 - 9)\hat{i} = 0\hat{i} \] ### Conclusion Thus, \(\Delta = 0\). ### Final Answer The value of \(\Delta\) is \(0\). ---
Promotional Banner

Topper's Solved these Questions

  • VECTORS

    VMC MODULES ENGLISH|Exercise LEVEL -2|47 Videos
  • VECTORS

    VMC MODULES ENGLISH|Exercise Numerical ValueType for JEE Main|15 Videos
  • VECTORS

    VMC MODULES ENGLISH|Exercise JEE ADVANCED (ARCHIVE) (TRUE/ FALSE)|30 Videos
  • TRIGONOMETRIC IDENTITIES AND EQUATIONS

    VMC MODULES ENGLISH|Exercise JEE Advanced (Archive)|11 Videos

Similar Questions

Explore conceptually related problems

If is given that vecx= (vecbxxvecc)/([veca,vecb,vecc]), vecy=(veccxxveca)/[(veca,vecb,vecc)], vecz=(vecaxxvecb)/[(veca,vecb,vecc)] where veca,vecb,vecc are non coplanar vectors. Find the value of vecx.(veca+vecb)+vecy.(vecc+vecb)+vecz(vecc+veca)

Show that [veca vecb vecc]\^2=|(veca.veca,veca.vecb,veca.vecc),(vecb.veca,vecb.vecb,vecb.vecc),(vecc.veca,vecc.vecb,vecc.vecc)|

If veca, vecb, vecc are three given non-coplanar vectors and any arbitrary vector vecr in space, where Delta_(1)=|{:(vecr.veca,vecb.veca,vecc.veca),(vecr.vecb,vecb.vecb,vecc.vecb),(vecr.vecc,vecb.vecc,vecc.vecc):}|,Delta_(2)=|{:(veca.veca,vecr.veca,vecc.veca),(veca.vecb,vecr.vecb,vecc.vecb),(veca.vecc,vecr.vecc ,vecc.vecc):}| Delta_(3)=|{:(veca.veca,vecb.veca,vecr.veca),(veca.vecb,vecb.vecb,vecr.vecb),(veca.vecc,vecb.vecc,vecr.vecc):}|, Delta=|{:(veca.veca,vecb.veca,vecc.veca),(veca.vecb,vecb.vecb,vecc.vecb),(veca.vecc,vecb.vecc,vecc.vecc):}|, "then prove that " vecr=(Delta_(1))/Deltaveca+(Delta_(2))/Deltavecb+(Delta_(3))/Deltavecc

If veca=hati+hatj+hatk,hatb=hati-hatj+hatk,vecc=hati+2hatj-hatk , then find the value of |{:(veca.veca,veca.vecb,veca.vecc),(vecb.veca,vecb.vecb,vecb.vecc),(vecc.veca,vecc.vecb,vecc.vecc):}|

If the vectors veca, vecb, and vecc are coplanar show that |(veca,vecb,vecc),(veca.veca, veca.vecb,veca.vecc),(vecb.veca,vecb.vecb,vecb.vecc)|=0

Show that the vectors 2veca-vecb+3vecc, veca+vecb-2vecc and veca+vecb-3vecc are non-coplanar vectors (where veca, vecb, vecc are non-coplanar vectors).

If veca,vecb,vecc are coplanar vectors , then show that |{:(veca,vecb,vecc),(veca*veca,veca*vecb,veca*vecc),(vecb*veca,vecb*vecb,vecb*vecc):}|=vec0

Prove that [veca+vecb vecb+vecc vecc+veca]=2[veca vecb vecc]

Prove that [veca+vecb,vecb+vecc,vecc+veca]=2[veca vecb vecc]

The value of [(veca-vecb, vecb-vecc, vecc-veca)] , where |veca|=1, |vecb|=5, |vecc|=3 , is

VMC MODULES ENGLISH-VECTORS -LEVEL -1
  1. The vector vec a has the components 2p and 1 w.r.t. a rectangular C...

    Text Solution

    |

  2. If the vectors veca=hati+ahatj+a^(2)hatk, vecb=hati+bhatj+b^(2)hatk, v...

    Text Solution

    |

  3. If veca =hati + hatj, vecb = hati - hatj + hatk and vecc is a unit vec...

    Text Solution

    |

  4. If the vectors veca and vecb are mutually perpendicular, then veca xx ...

    Text Solution

    |

  5. If veca is perpendicular to vecb and vecr is a non-zero vector such th...

    Text Solution

    |

  6. Let veca=hati-hatj, vecb=hatj-hatk, vecc=hatk-hati. If hatd is a unit ...

    Text Solution

    |

  7. Given that veca,vecc,vecd are coplanar the value of (veca + vecd).{vec...

    Text Solution

    |

  8. let veca , vecb and vecc be three vectors having magnitudes 1, 1 and 2...

    Text Solution

    |

  9. If A(1,-1,-3),B(2,1,-2) and C(-5,2,-6) are the position vectors of the...

    Text Solution

    |

  10. If |{:(veca,vecb,vecc),(veca.veca,veca.vecb,veca.vecc),(veca.vecc,vecb...

    Text Solution

    |

  11. Let vec(A)D be the angle bisector of angle A" of " Delta ABC such th...

    Text Solution

    |

  12. Let veca = 2hati + hatj + hatk, and vecb = hati+ hatj if c is a vecto...

    Text Solution

    |

  13. If veca and vecb are two unit vectors and theta is the angle between t...

    Text Solution

    |

  14. If veca + 2 vecb + 3 vecc = vec0 " then " veca xx vecb + vecb xx vecc...

    Text Solution

    |

  15. If veca,vecb,vecc and vecp,vecq,vecr are reciprocal system of vectors,...

    Text Solution

    |

  16. For any four vectors veca, vecb, vecc, vecd the expressions (vecb xx v...

    Text Solution

    |

  17. If veca xx (vec b xx vecc) is perpendicular to (veca xx vecb ) xx vecc...

    Text Solution

    |

  18. The three vectors hat i+hat j,hat j+hat k, hat k+hat i taken two at a ...

    Text Solution

    |

  19. Let p and q be the position vectors of P and Q respectively with respe...

    Text Solution

    |

  20. If in a right-angled triangle A B C , the hypotenuse A B=p ,t h e n...

    Text Solution

    |