Home
Class 12
MATHS
Let vec(A)D be the angle bisector of ang...

Let `vec(A)D` be the angle bisector of `angle A" of " Delta ABC ` such that `vec(A)D=alpha vec(A)B+beta vec(A)C,` then

A

`alpha = (|vec(AB)|)/(|vec(AB)| + |vec(AC)|), beta = (|vec(AC)|)/(|vec(AB)| + |vec(AC)|)`

B

`alpha =(|vec(AB)| + |vec(AC)|)/(|vec(AB)|), beta =(|vec(AB) + vec(AC)|)/(|vec(AC)|)`

C

`alpha =(|vec(AC)|)/(|vec(AB)|+| vec(AC)|), beta =(|vec(AB)|)/(|vec(AB)| + |vec(AC)|)`

D

`alpha = |(vec(AB))/(vec(AC))|, beta =|(vec(AB))/(vec(AB))|`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to find the values of \(\alpha\) and \(\beta\) in the expression for the angle bisector \(\vec{AD}\) of triangle \(ABC\). The angle bisector divides the opposite side \(BC\) in the ratio of the lengths of the other two sides \(AB\) and \(AC\). ### Step-by-Step Solution: 1. **Understanding the Angle Bisector**: The angle bisector \(\vec{AD}\) divides the opposite side \(BC\) in the ratio of the lengths of the sides \(AB\) and \(AC\). This means that if \(D\) is the point on \(BC\) where the angle bisector meets, then: \[ \frac{BD}{DC} = \frac{AB}{AC} \] 2. **Expressing \(\vec{AD}\)**: According to the problem, we can express \(\vec{AD}\) as: \[ \vec{AD} = \alpha \vec{AB} + \beta \vec{AC} \] 3. **Using the Ratio Formula**: The angle bisector theorem states that the length of the segments created by the angle bisector can be expressed in terms of the lengths of the sides: \[ \vec{AD} = \frac{|\vec{AC}|}{|\vec{AB}| + |\vec{AC}|} \vec{AB} + \frac{|\vec{AB}|}{|\vec{AB}| + |\vec{AC}|} \vec{AC} \] Here, we identify: \[ \alpha = \frac{|\vec{AC}|}{|\vec{AB}| + |\vec{AC}|} \] \[ \beta = \frac{|\vec{AB}|}{|\vec{AB}| + |\vec{AC}|} \] 4. **Final Expression**: Thus, we have derived the values for \(\alpha\) and \(\beta\): \[ \alpha = \frac{|\vec{AC}|}{|\vec{AB}| + |\vec{AC}|} \] \[ \beta = \frac{|\vec{AB}|}{|\vec{AB}| + |\vec{AC}|} \] 5. **Conclusion**: From the derived expressions, we can conclude that the values of \(\alpha\) and \(\beta\) correspond to the coefficients of \(\vec{AB}\) and \(\vec{AC}\) in the expression for the angle bisector \(\vec{AD}\).
Promotional Banner

Topper's Solved these Questions

  • VECTORS

    VMC MODULES ENGLISH|Exercise LEVEL -2|47 Videos
  • VECTORS

    VMC MODULES ENGLISH|Exercise Numerical ValueType for JEE Main|15 Videos
  • VECTORS

    VMC MODULES ENGLISH|Exercise JEE ADVANCED (ARCHIVE) (TRUE/ FALSE)|30 Videos
  • TRIGONOMETRIC IDENTITIES AND EQUATIONS

    VMC MODULES ENGLISH|Exercise JEE Advanced (Archive)|11 Videos

Similar Questions

Explore conceptually related problems

Let G be the centroid of Delta ABC , If vec(AB) = vec a , vec(AC) = vec b, then the vec(AG), in terms of vec a and vec b, is

Let G be the centroid of triangle \ A B Cdot If vec A B= vec a ,\ vec A C= vec b , then the bisector vec A G , in terms of vec a\ a n d\ vec b is 2/3( vec a+ vec b) b. 1/6( vec a+ vec b) c. 1/3( vec a+ vec b) d. 1/2( vec a+ vec b)1

If D is the mid point of side BC of a triangle ABC such that vec A B+ vec A C=lambda\ vec A D , write the value of lambdadot

Let vec(alpha),vec(beta) and vec(gamma be the unit vectors such that vec(alpha) and vec(beta) are mutually perpendicular and vec(gamma) is equally inclined to vec(alpha) and vec(beta) at an angle theta . If vec(gamma)=xvec(alpha)+yvec(beta)+z(vec(alpha)xxvec(beta)) , then which one of the folllowing is incorrect?

Let vec a , vec b , vec c , vec d be the position vectors of the four distinct points A , B , C , Ddot If vec b- vec a= vec a- vec d , then show that A B C D is parallelogram.

If vec a , vec b , vec ca n d vec d are the position vectors of the vertices of a cyclic quadrilateral A B C D , prove that (| vec axx vec b+ vec bxx vec d+ vec d xx vec a|)/(( vec b- vec a)dot( vec d- vec a))+(| vec bxx vec c+ vec cxx vec d+ vec d xx vec b|)/(( vec b- vec c)dot( vec d- vec c))=0dot

The vertices A , B , C of triangle A B C have respectively position vectors vec a , vec b , vec c with respect to a given origin O . Show that the point D where the bisector of /_A meets B C has position vector vec d=(beta vec b+gamma vec c)/(beta+gamma), where beta=| vec c- vec a| and, gamma=| vec a- vec b|dot

Let vec a , vec b , vec c , vec d be the position vectors of the four distinct points A , B , C , Ddot If vec b- vec a= vec c- vec d , then show that A B C D is parallelogram.

Let ABC be a triangle whose circumcentre is at P. If the position vectors of A, B, C and P are vec(a) , vec(b) , vec(c ) and (vec(a) + vec(b) + vec(c ))/(4) respectively, then the position vector of the orthocentre of this triangle is

Let vec a , vec b , vec c , vec d be the position vectors of the four distinct points A , B , C , Ddot If vec b- vec a= vec c- vec a , then show that A B C D is parallelogram.

VMC MODULES ENGLISH-VECTORS -LEVEL -1
  1. The vector vec a has the components 2p and 1 w.r.t. a rectangular C...

    Text Solution

    |

  2. If the vectors veca=hati+ahatj+a^(2)hatk, vecb=hati+bhatj+b^(2)hatk, v...

    Text Solution

    |

  3. If veca =hati + hatj, vecb = hati - hatj + hatk and vecc is a unit vec...

    Text Solution

    |

  4. If the vectors veca and vecb are mutually perpendicular, then veca xx ...

    Text Solution

    |

  5. If veca is perpendicular to vecb and vecr is a non-zero vector such th...

    Text Solution

    |

  6. Let veca=hati-hatj, vecb=hatj-hatk, vecc=hatk-hati. If hatd is a unit ...

    Text Solution

    |

  7. Given that veca,vecc,vecd are coplanar the value of (veca + vecd).{vec...

    Text Solution

    |

  8. let veca , vecb and vecc be three vectors having magnitudes 1, 1 and 2...

    Text Solution

    |

  9. If A(1,-1,-3),B(2,1,-2) and C(-5,2,-6) are the position vectors of the...

    Text Solution

    |

  10. If |{:(veca,vecb,vecc),(veca.veca,veca.vecb,veca.vecc),(veca.vecc,vecb...

    Text Solution

    |

  11. Let vec(A)D be the angle bisector of angle A" of " Delta ABC such th...

    Text Solution

    |

  12. Let veca = 2hati + hatj + hatk, and vecb = hati+ hatj if c is a vecto...

    Text Solution

    |

  13. If veca and vecb are two unit vectors and theta is the angle between t...

    Text Solution

    |

  14. If veca + 2 vecb + 3 vecc = vec0 " then " veca xx vecb + vecb xx vecc...

    Text Solution

    |

  15. If veca,vecb,vecc and vecp,vecq,vecr are reciprocal system of vectors,...

    Text Solution

    |

  16. For any four vectors veca, vecb, vecc, vecd the expressions (vecb xx v...

    Text Solution

    |

  17. If veca xx (vec b xx vecc) is perpendicular to (veca xx vecb ) xx vecc...

    Text Solution

    |

  18. The three vectors hat i+hat j,hat j+hat k, hat k+hat i taken two at a ...

    Text Solution

    |

  19. Let p and q be the position vectors of P and Q respectively with respe...

    Text Solution

    |

  20. If in a right-angled triangle A B C , the hypotenuse A B=p ,t h e n...

    Text Solution

    |