Home
Class 12
MATHS
If veca,vecb,vecc and vecp,vecq,vecr are...

If `veca,vecb,vecc` and `vecp,vecq,vecr` are reciprocal system of vectors, then `vecaxxvecp+vecbxxvecq+veccxxvecc` equals

A

`[veca vecb vecc]`

B

`vecp + vecq + vecr`

C

`vec0`

D

`veca + vecb + vecc`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to find the value of the expression \( \vec{a} \times \vec{p} + \vec{b} \times \vec{q} + \vec{c} \times \vec{r} \), given that \( \vec{a}, \vec{b}, \vec{c} \) and \( \vec{p}, \vec{q}, \vec{r} \) are reciprocal systems of vectors. ### Step-by-Step Solution: 1. **Understanding Reciprocal Vectors**: Since \( \vec{a}, \vec{b}, \vec{c} \) and \( \vec{p}, \vec{q}, \vec{r} \) are reciprocal systems, we can express \( \vec{p}, \vec{q}, \vec{r} \) in terms of \( \vec{a}, \vec{b}, \vec{c} \): \[ \vec{p} = \frac{\vec{b} \times \vec{c}}{\text{box}(\vec{a}, \vec{b}, \vec{c})} \] \[ \vec{q} = \frac{\vec{c} \times \vec{a}}{\text{box}(\vec{a}, \vec{b}, \vec{c})} \] \[ \vec{r} = \frac{\vec{a} \times \vec{b}}{\text{box}(\vec{a}, \vec{b}, \vec{c})} \] 2. **Substituting the Values**: Now, we substitute these expressions into the original equation: \[ \vec{a} \times \vec{p} + \vec{b} \times \vec{q} + \vec{c} \times \vec{r} \] becomes: \[ \vec{a} \times \left(\frac{\vec{b} \times \vec{c}}{\text{box}(\vec{a}, \vec{b}, \vec{c})}\right) + \vec{b} \times \left(\frac{\vec{c} \times \vec{a}}{\text{box}(\vec{a}, \vec{b}, \vec{c})}\right) + \vec{c} \times \left(\frac{\vec{a} \times \vec{b}}{\text{box}(\vec{a}, \vec{b}, \vec{c})}\right) \] 3. **Factoring Out the Common Denominator**: We can factor out \( \frac{1}{\text{box}(\vec{a}, \vec{b}, \vec{c})} \): \[ = \frac{1}{\text{box}(\vec{a}, \vec{b}, \vec{c})} \left( \vec{a} \times (\vec{b} \times \vec{c}) + \vec{b} \times (\vec{c} \times \vec{a}) + \vec{c} \times (\vec{a} \times \vec{b}) \right) \] 4. **Using the Vector Triple Product Identity**: We apply the vector triple product identity \( \vec{x} \times (\vec{y} \times \vec{z}) = (\vec{x} \cdot \vec{z}) \vec{y} - (\vec{x} \cdot \vec{y}) \vec{z} \): - For \( \vec{a} \times (\vec{b} \times \vec{c}) \): \[ = (\vec{a} \cdot \vec{c}) \vec{b} - (\vec{a} \cdot \vec{b}) \vec{c} \] - For \( \vec{b} \times (\vec{c} \times \vec{a}) \): \[ = (\vec{b} \cdot \vec{a}) \vec{c} - (\vec{b} \cdot \vec{c}) \vec{a} \] - For \( \vec{c} \times (\vec{a} \times \vec{b}) \): \[ = (\vec{c} \cdot \vec{b}) \vec{a} - (\vec{c} \cdot \vec{a}) \vec{b} \] 5. **Combining the Terms**: Combining all these results: \[ = \left[(\vec{a} \cdot \vec{c}) \vec{b} - (\vec{a} \cdot \vec{b}) \vec{c}\right] + \left[(\vec{b} \cdot \vec{a}) \vec{c} - (\vec{b} \cdot \vec{c}) \vec{a}\right] + \left[(\vec{c} \cdot \vec{b}) \vec{a} - (\vec{c} \cdot \vec{a}) \vec{b}\right] \] 6. **Simplifying the Expression**: Notice that the terms cancel out: - \( -(\vec{a} \cdot \vec{b}) \vec{c} + (\vec{b} \cdot \vec{a}) \vec{c} = 0 \) - \( -(\vec{b} \cdot \vec{c}) \vec{a} + (\vec{c} \cdot \vec{b}) \vec{a} = 0 \) - \( -(\vec{c} \cdot \vec{a}) \vec{b} + (\vec{a} \cdot \vec{c}) \vec{b} = 0 \) Therefore, we conclude: \[ \vec{a} \times \vec{p} + \vec{b} \times \vec{q} + \vec{c} \times \vec{r} = 0 \] 7. **Final Result**: Thus, the final answer is: \[ \vec{a} \times \vec{p} + \vec{b} \times \vec{q} + \vec{c} \times \vec{r} = 0 \]
Promotional Banner

Topper's Solved these Questions

  • VECTORS

    VMC MODULES ENGLISH|Exercise LEVEL -2|47 Videos
  • VECTORS

    VMC MODULES ENGLISH|Exercise Numerical ValueType for JEE Main|15 Videos
  • VECTORS

    VMC MODULES ENGLISH|Exercise JEE ADVANCED (ARCHIVE) (TRUE/ FALSE)|30 Videos
  • TRIGONOMETRIC IDENTITIES AND EQUATIONS

    VMC MODULES ENGLISH|Exercise JEE Advanced (Archive)|11 Videos

Similar Questions

Explore conceptually related problems

If veca,vecb,vecc and veca\', vecb\', vecc\' are reciprocal system of vectors prove that vecaxxveca'+vecbxxvecb'+veccxxvecc\'=vec0

If veca, vecb, vecc and veca', vecb', vecc' form a reciprocal system of vectors then veca.veca'+vecb.vecb'+vecc.vecc'=

If veca, vecb, vecc and veca', vecb', vecc' form a reciprocal system of vectors then veca.veca'+vecb.vecb'+vecc.vecc'=

If veca,vecb, vecc and veca',vecb',vecc' are reciprocal system of vectors, then prove that veca'xxvecb'+vecb'xxvecc'+vecc'xxveca'=(veca+vecb+vecc)/([vecavecbvecc])

If veca, vecb, vecc and veca', vecb', vecc' form a reciprocal system of vectors then [(veca', vecb', vecc')]=

If veca, vecb, vecc are non coplanar vectors and vecp, vecq, vecr are reciprocal vectors, then (lveca+mvecb+nvecc).(lvecp+mvecq+nvecr) is equal to

Let veca, vecb , vecc be non -coplanar vectors and let equations veca', vecb', vecc' are reciprocal system of vector veca, vecb ,vecc then prove that veca xx veca' + vecb xx vecb' + vecc xx vecc' is a null vector.

If veca, vecb and vecc are three non-coplanar vectors, then (veca + vecb + vecc). [(veca + vecb) xx (veca + vecc)] equals

If veca, vecb, vecc are any three non coplanar vectors, then [(veca+vecb+vecc, veca-vecc, veca-vecb)] is equal to

If veca , vecb and vecc are three vectors such that vecaxx vecb =vecc, vecb xx vecc= veca, vecc xx veca =vecb then prove that |veca|= |vecb|=|vecc|

VMC MODULES ENGLISH-VECTORS -LEVEL -1
  1. The vector vec a has the components 2p and 1 w.r.t. a rectangular C...

    Text Solution

    |

  2. If the vectors veca=hati+ahatj+a^(2)hatk, vecb=hati+bhatj+b^(2)hatk, v...

    Text Solution

    |

  3. If veca =hati + hatj, vecb = hati - hatj + hatk and vecc is a unit vec...

    Text Solution

    |

  4. If the vectors veca and vecb are mutually perpendicular, then veca xx ...

    Text Solution

    |

  5. If veca is perpendicular to vecb and vecr is a non-zero vector such th...

    Text Solution

    |

  6. Let veca=hati-hatj, vecb=hatj-hatk, vecc=hatk-hati. If hatd is a unit ...

    Text Solution

    |

  7. Given that veca,vecc,vecd are coplanar the value of (veca + vecd).{vec...

    Text Solution

    |

  8. let veca , vecb and vecc be three vectors having magnitudes 1, 1 and 2...

    Text Solution

    |

  9. If A(1,-1,-3),B(2,1,-2) and C(-5,2,-6) are the position vectors of the...

    Text Solution

    |

  10. If |{:(veca,vecb,vecc),(veca.veca,veca.vecb,veca.vecc),(veca.vecc,vecb...

    Text Solution

    |

  11. Let vec(A)D be the angle bisector of angle A" of " Delta ABC such th...

    Text Solution

    |

  12. Let veca = 2hati + hatj + hatk, and vecb = hati+ hatj if c is a vecto...

    Text Solution

    |

  13. If veca and vecb are two unit vectors and theta is the angle between t...

    Text Solution

    |

  14. If veca + 2 vecb + 3 vecc = vec0 " then " veca xx vecb + vecb xx vecc...

    Text Solution

    |

  15. If veca,vecb,vecc and vecp,vecq,vecr are reciprocal system of vectors,...

    Text Solution

    |

  16. For any four vectors veca, vecb, vecc, vecd the expressions (vecb xx v...

    Text Solution

    |

  17. If veca xx (vec b xx vecc) is perpendicular to (veca xx vecb ) xx vecc...

    Text Solution

    |

  18. The three vectors hat i+hat j,hat j+hat k, hat k+hat i taken two at a ...

    Text Solution

    |

  19. Let p and q be the position vectors of P and Q respectively with respe...

    Text Solution

    |

  20. If in a right-angled triangle A B C , the hypotenuse A B=p ,t h e n...

    Text Solution

    |