Home
Class 12
MATHS
Let P, Q, R and S be the points on the p...

Let P, Q, R and S be the points on the plane with position vectors `-2hat(i)-hat(j), 4hat(i), 3hat(i)+3hat(j) and -3hat(i)+2hat(j)`, respectively. The quadrilateral PQRS must be

A

parallelogram, which is neither a rhombus nor a rectangle

B

square

C

rectangle, but not a square

D

rhombus, but not a square

Text Solution

AI Generated Solution

The correct Answer is:
To determine the type of quadrilateral formed by the points P, Q, R, and S with given position vectors, we will follow these steps: ### Step 1: Identify the position vectors The position vectors of the points are: - \( \vec{P} = -2\hat{i} - \hat{j} \) - \( \vec{Q} = 4\hat{i} \) - \( \vec{R} = 3\hat{i} + 3\hat{j} \) - \( \vec{S} = -3\hat{i} + 2\hat{j} \) ### Step 2: Calculate the vectors for the sides of the quadrilateral 1. **Vector \( \vec{PQ} \)**: \[ \vec{PQ} = \vec{Q} - \vec{P} = (4\hat{i}) - (-2\hat{i} - \hat{j}) = 4\hat{i} + 2\hat{i} + \hat{j} = 6\hat{i} + \hat{j} \] 2. **Vector \( \vec{QR} \)**: \[ \vec{QR} = \vec{R} - \vec{Q} = (3\hat{i} + 3\hat{j}) - (4\hat{i}) = -\hat{i} + 3\hat{j} \] 3. **Vector \( \vec{RS} \)**: \[ \vec{RS} = \vec{S} - \vec{R} = (-3\hat{i} + 2\hat{j}) - (3\hat{i} + 3\hat{j}) = -6\hat{i} - \hat{j} \] 4. **Vector \( \vec{SP} \)**: \[ \vec{SP} = \vec{P} - \vec{S} = (-2\hat{i} - \hat{j}) - (-3\hat{i} + 2\hat{j}) = \hat{i} - 3\hat{j} \] ### Step 3: Calculate the magnitudes of the vectors 1. **Magnitude of \( \vec{PQ} \)**: \[ |\vec{PQ}| = \sqrt{(6)^2 + (1)^2} = \sqrt{36 + 1} = \sqrt{37} \] 2. **Magnitude of \( \vec{QR} \)**: \[ |\vec{QR}| = \sqrt{(-1)^2 + (3)^2} = \sqrt{1 + 9} = \sqrt{10} \] 3. **Magnitude of \( \vec{RS} \)**: \[ |\vec{RS}| = \sqrt{(-6)^2 + (-1)^2} = \sqrt{36 + 1} = \sqrt{37} \] 4. **Magnitude of \( \vec{SP} \)**: \[ |\vec{SP}| = \sqrt{(1)^2 + (-3)^2} = \sqrt{1 + 9} = \sqrt{10} \] ### Step 4: Check the conditions for a parallelogram We have: - \( |\vec{PQ}| = |\vec{RS}| \) (both equal to \( \sqrt{37} \)) - \( |\vec{QR}| = |\vec{SP}| \) (both equal to \( \sqrt{10} \)) Since opposite sides are equal, this indicates that the quadrilateral is at least a parallelogram. ### Step 5: Check if it is a rectangle To check if it is a rectangle, we need to see if adjacent sides are perpendicular. We can do this by calculating the dot product of \( \vec{PQ} \) and \( \vec{QR} \): \[ \vec{PQ} \cdot \vec{QR} = (6\hat{i} + \hat{j}) \cdot (-\hat{i} + 3\hat{j}) = 6(-1) + 1(3) = -6 + 3 = -3 \] Since the dot product is non-zero, \( \vec{PQ} \) is not perpendicular to \( \vec{QR} \). ### Conclusion Since opposite sides are equal and adjacent sides are not perpendicular, the quadrilateral PQRS is a parallelogram but not a rectangle or a rhombus. ### Final Answer The quadrilateral PQRS is a **parallelogram**. ---
Promotional Banner

Topper's Solved these Questions

  • VECTORS

    VMC MODULES ENGLISH|Exercise JEE ADVANCED (ARCHIVE) (INTEGER TYPE)|4 Videos
  • VECTORS

    VMC MODULES ENGLISH|Exercise JEE ADVANCED (ARCHIVE) (TRUE/ FALSE)|30 Videos
  • VECTORS

    VMC MODULES ENGLISH|Exercise JEE MAIN (ARCHIVE)|60 Videos
  • TRIGONOMETRIC IDENTITIES AND EQUATIONS

    VMC MODULES ENGLISH|Exercise JEE Advanced (Archive)|11 Videos

Similar Questions

Explore conceptually related problems

Find the angle between the vectors 2 hat(i) - hat(j) - hat(k) and 3 hat(i) + 4 hat(j) - hat(k) .

Show that the vectors 2hat(i)-hat(j)+hat(k) and hat(i)-3hat(j)-5hat(k) are at right angles.

If three points A, B and C with position vectors hat(i) + x hat(j) +3 hat(k) , 3 hat(i) + 4 hat(j) + 7hat( k) and y hat(i) - 2 hat(j) - 5 hat(k) respectively are collinear, then (x,y) =

Show that the vectors hat(i)-hat(j)-6hat(k),hat(i)-3hat(j)+4hat(k)and2hat(i)-5hat(j)+3hat(k) are coplanar.

Vector vec(A)=hat(i)+hat(j)-2hat(k) and vec(B)=3hat(i)+3hat(j)-6hat(k) are :

Find a unit vector perpendicular to the plane of two vectors a=hat(i)-hat(j)+2hat(k) and b=2hat(i)+3hat(j)-hat(k) .

The component of vector A= 2hat(i)+3hat(j) along the vector hat(i)+hat(j) is

If points A,B and C with position vectors 2 hat(i) - hat(j) + hat(k) , hat(i) - 3 hat(j) - 5hat(k) and alpha hat(i) - 3 hat(j) + hat(k) respectively are the vertices of a right-anged triangle with /_C = ( pi )/( 2) , then the values of alpha are

Find the value of lamda , if the points with position vectors 3hat(i)- 2hat(j)- hat(k), 2hat(i) + 3hat(j)- 4hat(k), -hat(i) + hat(j) + 2hat(k), 4hat(i) + 5hat(j) + lamda hat(k) are coplanar.

Find the image of the point having position vector hat(i) + 3hat(j) + 4hat(k) in the plane vec(r ).(2hat(i) - hat(j) + hat(k))+ 3=0

VMC MODULES ENGLISH-VECTORS -JEE ADVANCED (ARCHIVE)
  1. Let veca=hati + hatj +hatk,vecb=hati- hatj + hatk and vecc= hati-hatj...

    Text Solution

    |

  2. Two adjacent sides of a parallelogram A B C D are given by vec A B=...

    Text Solution

    |

  3. Let P, Q, R and S be the points on the plane with position vectors -2h...

    Text Solution

    |

  4. Let two non-collinear unit vectors veca and vecb form an acute angle. ...

    Text Solution

    |

  5. Let veca=hati + 2hatj +hatk, vecb=hati - hatj +hatk andvecc= hathatj-h...

    Text Solution

    |

  6. if veca , vecb and vecc are three non-zero, non- coplanar vectors and ...

    Text Solution

    |

  7. If veca and vecb are vectors such that |veca+ecb|=sqrt(29) and veca xx...

    Text Solution

    |

  8. Let a, b, c be unit vectors such that a+b+c=0. Which one of the follow...

    Text Solution

    |

  9. Let the vectors vec(PQ),vec(QR),vec(RS), vec(ST), vec(TU) and vec(UP) ...

    Text Solution

    |

  10. If veca, vecc, vecc and vecd are unit vectors such that (vecaxx vecb)....

    Text Solution

    |

  11. The edges of a parallelopiped are of unit length and are parallel to ...

    Text Solution

    |

  12. The number of distinct real values of alpha, for which the vectors -la...

    Text Solution

    |

  13. Find the value of a so that the volume of the parallelopiped formed b...

    Text Solution

    |

  14. Let A be vector parallel to line of intersection of planes P1 and P2. ...

    Text Solution

    |

  15. The vector(s) which is /are coplanar with vectors hati +hatj + 2hatk a...

    Text Solution

    |

  16. Let vecu = u(1)hati + u(2)hatj +u(3)hatk be a unit vector in R^(3) a...

    Text Solution

    |

  17. Let PQR be a triangle . Let veca=overline(QR),vecb = overline(RP) and ...

    Text Solution

    |

  18. Let O be the origin and let PQR be an arbitrary triangle. The point S ...

    Text Solution

    |

  19. Let O be the origin and vec(OX) , vec(OY) , vec(OZ) be three unit vec...

    Text Solution

    |

  20. Let O be the origin and vec(OX) , vec(OY) , vec(OZ) be three unit vec...

    Text Solution

    |