Home
Class 12
MATHS
A, B C and D are four points in a plane ...

A, B C and D are four points in a plane with position vectors, `veca, vecb vecc and vecd` respectively, such that `(veca-vecd).(vecb-vecc)= (vecb-vecd).(vecc-veca)=0` then point D is the ______ of triangle ABC.

Text Solution

Verified by Experts

The correct Answer is:
Orthocentre
Promotional Banner

Topper's Solved these Questions

  • VECTORS

    VMC MODULES ENGLISH|Exercise JEE ADVANCED (ARCHIVE) (INTEGER TYPE)|4 Videos
  • VECTORS

    VMC MODULES ENGLISH|Exercise JEE ADVANCED (ARCHIVE) (TRUE/ FALSE)|30 Videos
  • VECTORS

    VMC MODULES ENGLISH|Exercise JEE MAIN (ARCHIVE)|60 Videos
  • TRIGONOMETRIC IDENTITIES AND EQUATIONS

    VMC MODULES ENGLISH|Exercise JEE Advanced (Archive)|11 Videos

Similar Questions

Explore conceptually related problems

A, B, C and D have position vectors veca, vecb, vecc and vecd , repectively, such that veca-vecb = 2(vecd-vecc) . Then

for any four vectors veca,vecb, vecc and vecd prove that vecd. (vecaxx(vecbxx(veccxxvecd)))=(vecb.vecd)[veca vecc vecd]

If veca,vecb,vecc and vecd are unit vectors such that (vecaxxvecb)*(veccxxvecd)=1 and veca.vecc=1/2, then

If veca, vecb, vecc are vectors such that veca.vecb=0 and veca + vecb = vecc then:

If veca, vecb, vecc are any three vectors such that (veca+vecb).vecc=(veca-vecb)vecc=0 then (vecaxxvecb)xxvecc is

If veca, vecb, vecc are vectors such that |vecb|=|vecc| then {(veca+vecb)xx(veca+vecc)}xx(vecbxxvecc).(vecb+vecc)=

If veca, vecb, vecc are any three non coplanar vectors, then (veca+vecb+vecc).(vecb+vecc)xx(vecc+veca)

Prove that: [(vecaxxvecb)xx(vecaxxvecc)].vecd=[veca vecb vecc](veca.vecd)

Show that the points whose position vectors are veca,vecb,vecc,vecd will be coplanar if [veca vecb vecc]-[veca vecb vecd]+[veca vecc vecd]-[vecb vecc vecd]=0

Show that: (veca-vecd)xx(vecb-vecc)+(vecb-vecd)xx(vecc-veca)+(vecc-vecd)xx(veca-vecb) is independent of vecd .

VMC MODULES ENGLISH-VECTORS -JEE ADVANCED (ARCHIVE)
  1. Let PQR be a triangle . Let veca=overline(QR),vecb = overline(RP) and ...

    Text Solution

    |

  2. Let O be the origin and let PQR be an arbitrary triangle. The point S ...

    Text Solution

    |

  3. Let O be the origin and vec(OX) , vec(OY) , vec(OZ) be three unit vec...

    Text Solution

    |

  4. Let O be the origin and vec(OX) , vec(OY) , vec(OZ) be three unit vec...

    Text Solution

    |

  5. The components of a vector veca along and perpendicular to a non-zero ...

    Text Solution

    |

  6. A, B C and D are four points in a plane with position vectors, veca, v...

    Text Solution

    |

  7. Let vecA , vecB and vecC be vectors of legth , 3,4and 5 respectively. ...

    Text Solution

    |

  8. If vecb and vecc are any two mutually perpendicular unit vectors and v...

    Text Solution

    |

  9. Find a unit vector pependicular to the plane determined by the points ...

    Text Solution

    |

  10. the area of the triangle whose vertices are A ( 1,-1,2) , B ( 1,2, -1)...

    Text Solution

    |

  11. Let vec(OA) =veca, vec(OB) = 10veca + 2vecb and vec(OC) =vecb where , ...

    Text Solution

    |

  12. If the vectors ahati+hatj+hatk, hati+bhatj+hatk, hati+hatj+chatk(a!=1,...

    Text Solution

    |

  13. If vecA,vecB,vecC are non-coplanar vectors than ( vecA . vecB xx vecC...

    Text Solution

    |

  14. If |(a,a^2,1+a^3),(b,b^2,1+b^3),(c,c^2,1+c^3)|=0 and vectors (1,a,a^2)...

    Text Solution

    |

  15. let veca , vecb and vecc be three vectors having magnitudes 1, 1 and 2...

    Text Solution

    |

  16. A non vector veca is parallel to the line of intersection of the plane...

    Text Solution

    |

  17. The vector(s) which is /are coplanar with vectors hati +hatj + 2hatk a...

    Text Solution

    |

  18. Let vecb= 4 hati + 3hatj and vecc be two vectors perpendicular to each...

    Text Solution

    |

  19. If vecA = ( 1,1,1) and vecC= (0, 1,-1) are given vectors the vector ve...

    Text Solution

    |

  20. Consider the cube in the first octant with sides OP,OQ and OR of lengt...

    Text Solution

    |