Home
Class 12
MATHS
If vecA,vecB,vecC are non-coplanar vecto...

If `vecA,vecB,vecC` are non-coplanar vectors than `( vecA . vecB xx vecC )/(vecCxxvecA.vecB)+(vecB. vecA xx vecC)/( vecC. vecA xx vecB)` is equal to

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to simplify the given expression step by step. The expression is: \[ \frac{\vec{A} \cdot (\vec{B} \times \vec{C})}{\vec{C} \cdot (\vec{A} \times \vec{B})} + \frac{\vec{B} \cdot (\vec{A} \times \vec{C})}{\vec{C} \cdot (\vec{A} \times \vec{B})} \] ### Step 1: Identify the Scalar Triple Products The terms in the numerators can be recognized as scalar triple products. We can rewrite the expression as: \[ \frac{[\vec{A}, \vec{B}, \vec{C}]}{[\vec{C}, \vec{A}, \vec{B}]} + \frac{[\vec{B}, \vec{A}, \vec{C}]}{[\vec{C}, \vec{A}, \vec{B}]} \] Where \([\vec{X}, \vec{Y}, \vec{Z}]\) denotes the scalar triple product of vectors \(\vec{X}, \vec{Y}, \vec{Z}\). ### Step 2: Combine the Fractions Since both terms have the same denominator, we can combine them: \[ \frac{[\vec{A}, \vec{B}, \vec{C}] + [\vec{B}, \vec{A}, \vec{C}]}{[\vec{C}, \vec{A}, \vec{B}]} \] ### Step 3: Simplify the Numerator Now, we need to simplify the numerator. The scalar triple product has the property that swapping two vectors changes the sign: \[ [\vec{B}, \vec{A}, \vec{C}] = -[\vec{A}, \vec{B}, \vec{C}] \] Thus, we can write: \[ [\vec{A}, \vec{B}, \vec{C}] + [\vec{B}, \vec{A}, \vec{C}] = [\vec{A}, \vec{B}, \vec{C}] - [\vec{A}, \vec{B}, \vec{C}] = 0 \] ### Step 4: Final Expression Substituting back into our combined fraction gives: \[ \frac{0}{[\vec{C}, \vec{A}, \vec{B}]} = 0 \] Thus, the value of the entire expression is: \[ \boxed{0} \]
Promotional Banner

Topper's Solved these Questions

  • VECTORS

    VMC MODULES ENGLISH|Exercise JEE ADVANCED (ARCHIVE) (INTEGER TYPE)|4 Videos
  • VECTORS

    VMC MODULES ENGLISH|Exercise JEE ADVANCED (ARCHIVE) (TRUE/ FALSE)|30 Videos
  • VECTORS

    VMC MODULES ENGLISH|Exercise JEE MAIN (ARCHIVE)|60 Videos
  • TRIGONOMETRIC IDENTITIES AND EQUATIONS

    VMC MODULES ENGLISH|Exercise JEE Advanced (Archive)|11 Videos

Similar Questions

Explore conceptually related problems

If vecA, vecB, vecC are non-coplanar vectors then (vecA.vecBxxvecC)/(vecCxxvecA.vecB)+(vecB.vecAxxvecC)/(vecC.vecAxxvecB)=

If veca, vecb, vecc are non-coplanar vectors, then (veca.(vecb xx vecc))/(vecb.(vecc xx veca)) + (vecb.(vecc xx veca))/(vecc.(veca xx vecb)) +(vecc.(vecb xx veca))/(veca. (vecb xx vecc)) is equal to:

If veca, vecb, vecc are three non coplanar, non zero vectors then (veca.veca)(vecbxxvecc)+(veca.vecb)(veccxxveca)+(veca.vecc)(vecaxxvecb) is equal to

If veca, vecb, vecc are any three non coplanar vectors, then (veca+vecb+vecc).(vecb+vecc)xx(vecc+veca)

If veca, vecb and vecc are three non-coplanar vectors, then (veca + vecb + vecc). [(veca + vecb) xx (veca + vecc)] equals

If veca, vecb, vecc are non-null non coplanar vectors, then [(veca-2vecb+vecc, vecb-2vecc+veca, vecc-2veca+vecb)]=

If veca , vecb and vecc are non- coplanar vectors and veca xx vecc is perpendicular to veca xx (vecb xx vecc) , then the value of [ veca xx ( vecb xx vecc)] xx vecc is equal to

If veca, vecb, vecc are any three non coplanar vectors, then [(veca+vecb+vecc, veca-vecc, veca-vecb)] is equal to

If vecA,vecB and vecC are three non coplanar then (vecA+vecB+vecC).{(vecA+vecB)xx(vecA+vecC)} equals: (A) 0 (B) [vecA vecB vecC] (C) 2[vecA vecB vecC] (D) -[vecA vecB vecC]

veca, vecb,vecc are non-coplanar vectors and vecp,vecq,vecr are defined as vecp = (vecb xx vecc)/([vecb vecc veca]),q=(vecc xx veca)/([vecc veca vecb]), vecr =(veca xx vecb)/([veca vecb vecc]) then (veca + vecb).vecp+(vecb+vecc).vecq + (vecc + veca).vecr is equal to.

VMC MODULES ENGLISH-VECTORS -JEE ADVANCED (ARCHIVE)
  1. Let PQR be a triangle . Let veca=overline(QR),vecb = overline(RP) and ...

    Text Solution

    |

  2. Let O be the origin and let PQR be an arbitrary triangle. The point S ...

    Text Solution

    |

  3. Let O be the origin and vec(OX) , vec(OY) , vec(OZ) be three unit vec...

    Text Solution

    |

  4. Let O be the origin and vec(OX) , vec(OY) , vec(OZ) be three unit vec...

    Text Solution

    |

  5. The components of a vector veca along and perpendicular to a non-zero ...

    Text Solution

    |

  6. A, B C and D are four points in a plane with position vectors, veca, v...

    Text Solution

    |

  7. Let vecA , vecB and vecC be vectors of legth , 3,4and 5 respectively. ...

    Text Solution

    |

  8. If vecb and vecc are any two mutually perpendicular unit vectors and v...

    Text Solution

    |

  9. Find a unit vector pependicular to the plane determined by the points ...

    Text Solution

    |

  10. the area of the triangle whose vertices are A ( 1,-1,2) , B ( 1,2, -1)...

    Text Solution

    |

  11. Let vec(OA) =veca, vec(OB) = 10veca + 2vecb and vec(OC) =vecb where , ...

    Text Solution

    |

  12. If the vectors ahati+hatj+hatk, hati+bhatj+hatk, hati+hatj+chatk(a!=1,...

    Text Solution

    |

  13. If vecA,vecB,vecC are non-coplanar vectors than ( vecA . vecB xx vecC...

    Text Solution

    |

  14. If |(a,a^2,1+a^3),(b,b^2,1+b^3),(c,c^2,1+c^3)|=0 and vectors (1,a,a^2)...

    Text Solution

    |

  15. let veca , vecb and vecc be three vectors having magnitudes 1, 1 and 2...

    Text Solution

    |

  16. A non vector veca is parallel to the line of intersection of the plane...

    Text Solution

    |

  17. The vector(s) which is /are coplanar with vectors hati +hatj + 2hatk a...

    Text Solution

    |

  18. Let vecb= 4 hati + 3hatj and vecc be two vectors perpendicular to each...

    Text Solution

    |

  19. If vecA = ( 1,1,1) and vecC= (0, 1,-1) are given vectors the vector ve...

    Text Solution

    |

  20. Consider the cube in the first octant with sides OP,OQ and OR of lengt...

    Text Solution

    |