Home
Class 12
MATHS
If |(a,a^2,1+a^3),(b,b^2,1+b^3),(c,c^2,1...

If `|(a,a^2,1+a^3),(b,b^2,1+b^3),(c,c^2,1+c^3)|=0` and vectors `(1,a,a^2),(1,b,b^2) and (1,c,c^2)` are non coplanar then the product abc equals (A) 2 (B) -1 (C) 1 (D) 0

Text Solution

AI Generated Solution

The correct Answer is:
To solve the given problem, we need to analyze the determinant and the conditions provided. Let's break it down step by step. ### Step 1: Write the Determinant The determinant given in the problem is: \[ D = \begin{vmatrix} a & a^2 & 1 + a^3 \\ b & b^2 & 1 + b^3 \\ c & c^2 & 1 + c^3 \end{vmatrix} \] We know that \( |D| = 0 \). ### Step 2: Rewrite the Determinant We can rewrite the third column of the determinant: \[ 1 + a^3 = 1 + a \cdot a^2 \] Thus, we can express the determinant as: \[ D = \begin{vmatrix} a & a^2 & 1 + a \cdot a^2 \\ b & b^2 & 1 + b \cdot b^2 \\ c & c^2 & 1 + c \cdot c^2 \end{vmatrix} \] ### Step 3: Apply Properties of Determinants We can separate the determinant into two parts: \[ D = \begin{vmatrix} a & a^2 & 1 \\ b & b^2 & 1 \\ c & c^2 & 1 \end{vmatrix} + \begin{vmatrix} a & a^2 & a \\ b & b^2 & b \\ c & c^2 & c \end{vmatrix} \] The second determinant can be factored out: \[ = \begin{vmatrix} a & a^2 & 1 \\ b & b^2 & 1 \\ c & c^2 & 1 \end{vmatrix} + abc \begin{vmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \\ 1 & 1 & 1 \end{vmatrix} \] Since the second determinant is zero, we have: \[ D = \begin{vmatrix} a & a^2 & 1 \\ b & b^2 & 1 \\ c & c^2 & 1 \end{vmatrix} = 0 \] ### Step 4: Non-Coplanarity Condition The vectors \( (1, a, a^2) \), \( (1, b, b^2) \), and \( (1, c, c^2) \) are given to be non-coplanar. This means that the determinant of these vectors must not equal zero: \[ \begin{vmatrix} 1 & a & a^2 \\ 1 & b & b^2 \\ 1 & c & c^2 \end{vmatrix} \neq 0 \] ### Step 5: Conclusion from the Determinant Since we have \( D = 0 \) and the non-coplanarity condition implies that the determinant of the vectors must not be zero, we can conclude that: \[ 1 + abc = 0 \implies abc = -1 \] ### Final Answer Thus, the product \( abc \) equals \( -1 \). The correct option is (B) -1. ---
Promotional Banner

Topper's Solved these Questions

  • VECTORS

    VMC MODULES ENGLISH|Exercise JEE ADVANCED (ARCHIVE) (INTEGER TYPE)|4 Videos
  • VECTORS

    VMC MODULES ENGLISH|Exercise JEE ADVANCED (ARCHIVE) (TRUE/ FALSE)|30 Videos
  • VECTORS

    VMC MODULES ENGLISH|Exercise JEE MAIN (ARCHIVE)|60 Videos
  • TRIGONOMETRIC IDENTITIES AND EQUATIONS

    VMC MODULES ENGLISH|Exercise JEE Advanced (Archive)|11 Videos

Similar Questions

Explore conceptually related problems

If |(a,a^2,1+a^3),(b,b^2,1+b^3),(c,c^2,1+c^2)|=0 and vectors (1,a,a^2),(1,b,b^2) and (1,c,c^2) are hon coplanar then the product abc equals (A) 2 (B) -1 (C) 1 (D) 0

If a/b+b/a=1, then a^3+b^3=? (a) 1 (b) -1 (c) 1/2 (d) 0

If a/b+b/a=\ -1, then a^3-b^3=? (a)1 (b) -1 (c) 1/2 (d) 0

If A=[(n,0 ,0),( 0,n,0),( 0, 0,n)] and B=[(a_1,a_2,a_3),(b_1,b_2,b_3),(c_1,c_2,c_3)] , then A B is equal to (A) B (B) n B (C) B^n (D) A+B

Prove: |[1,a^2+bc, a^3],[ 1,b^2+c a, b^3],[ 1,c^2+a b, c^3]|=-(a-b)(b-c)(c-a)(a^2+b^2+c^2)

Show that |[1,a,a^2],[1,b,b^2],[1,c,c^2]|=(a-b)(b-c)(c-a)

If a ,b and c are in A.P. and b-a ,c-b and a are in G.P., then a : b : c is (a). 1:2:3 (b). 1:3:5 (c). 2:3:4 (d). 1:2:4

The points A(1,1,0),B(0,1,1),C(1,0,1) and D(2/3, 2/3, 2/3) are (A) coplanar (B) non coplanar (C) vertices of a paralleloram (D) none of these

If a,b, and c are all different and if |{:(a,a^(2),1+a^(3)),(b,b^(2),1+b^(3)),(c,c^(2),1+c^(3)):}| =0 Prove that abc =-1.

If a+b+c=1 , a^2+b^2+c^2=9 and a^3+b^3+c^3=1 , then 1/a + 1/b + 1/c is (i) 0 (ii) -1 (iii) 1 (iv) 3

VMC MODULES ENGLISH-VECTORS -JEE ADVANCED (ARCHIVE)
  1. Let PQR be a triangle . Let veca=overline(QR),vecb = overline(RP) and ...

    Text Solution

    |

  2. Let O be the origin and let PQR be an arbitrary triangle. The point S ...

    Text Solution

    |

  3. Let O be the origin and vec(OX) , vec(OY) , vec(OZ) be three unit vec...

    Text Solution

    |

  4. Let O be the origin and vec(OX) , vec(OY) , vec(OZ) be three unit vec...

    Text Solution

    |

  5. The components of a vector veca along and perpendicular to a non-zero ...

    Text Solution

    |

  6. A, B C and D are four points in a plane with position vectors, veca, v...

    Text Solution

    |

  7. Let vecA , vecB and vecC be vectors of legth , 3,4and 5 respectively. ...

    Text Solution

    |

  8. If vecb and vecc are any two mutually perpendicular unit vectors and v...

    Text Solution

    |

  9. Find a unit vector pependicular to the plane determined by the points ...

    Text Solution

    |

  10. the area of the triangle whose vertices are A ( 1,-1,2) , B ( 1,2, -1)...

    Text Solution

    |

  11. Let vec(OA) =veca, vec(OB) = 10veca + 2vecb and vec(OC) =vecb where , ...

    Text Solution

    |

  12. If the vectors ahati+hatj+hatk, hati+bhatj+hatk, hati+hatj+chatk(a!=1,...

    Text Solution

    |

  13. If vecA,vecB,vecC are non-coplanar vectors than ( vecA . vecB xx vecC...

    Text Solution

    |

  14. If |(a,a^2,1+a^3),(b,b^2,1+b^3),(c,c^2,1+c^3)|=0 and vectors (1,a,a^2)...

    Text Solution

    |

  15. let veca , vecb and vecc be three vectors having magnitudes 1, 1 and 2...

    Text Solution

    |

  16. A non vector veca is parallel to the line of intersection of the plane...

    Text Solution

    |

  17. The vector(s) which is /are coplanar with vectors hati +hatj + 2hatk a...

    Text Solution

    |

  18. Let vecb= 4 hati + 3hatj and vecc be two vectors perpendicular to each...

    Text Solution

    |

  19. If vecA = ( 1,1,1) and vecC= (0, 1,-1) are given vectors the vector ve...

    Text Solution

    |

  20. Consider the cube in the first octant with sides OP,OQ and OR of lengt...

    Text Solution

    |