Home
Class 12
MATHS
Letveca and vecb be two unit vectors suc...

Let`veca` and `vecb` be two unit vectors such that `veca.vecb=0`. For some `x,y in R`, let `vecc = xveca + yvecb + (veca xx vecb)` . If `|vecc|=2` and the vector `vecc` is inclined at the same angle `angle` to both `veca` and `vecb`, then the value of `8cos^(2)alpha` is________________

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem step by step, we will analyze the given information and derive the required value systematically. ### Step 1: Understand the Given Information We have two unit vectors \(\vec{a}\) and \(\vec{b}\) such that \(\vec{a} \cdot \vec{b} = 0\). This implies that \(\vec{a}\) and \(\vec{b}\) are perpendicular to each other. ### Step 2: Define the Vector \(\vec{c}\) The vector \(\vec{c}\) is defined as: \[ \vec{c} = x\vec{a} + y\vec{b} + (\vec{a} \times \vec{b}) \] where \(x\) and \(y\) are real numbers. ### Step 3: Calculate the Magnitude of \(\vec{c}\) We know that \(|\vec{c}| = 2\). To find the magnitude of \(\vec{c}\), we will use the property that the vectors \(\vec{a}\), \(\vec{b}\), and \(\vec{a} \times \vec{b}\) are mutually perpendicular. Thus, we can write: \[ |\vec{c}|^2 = |x\vec{a}|^2 + |y\vec{b}|^2 + |\vec{a} \times \vec{b}|^2 \] Since \(|\vec{a}| = 1\) and \(|\vec{b}| = 1\), we have: \[ |\vec{c}|^2 = x^2 + y^2 + |\vec{a} \times \vec{b}|^2 \] The magnitude of \(\vec{a} \times \vec{b}\) is given by: \[ |\vec{a} \times \vec{b}| = |\vec{a}||\vec{b}|\sin(\theta) = 1 \cdot 1 \cdot \sin(90^\circ) = 1 \] Thus, we can substitute this into our equation: \[ |\vec{c}|^2 = x^2 + y^2 + 1 \] Given that \(|\vec{c}| = 2\), we have: \[ 4 = x^2 + y^2 + 1 \] This simplifies to: \[ x^2 + y^2 = 3 \] ### Step 4: Find the Angles Since \(\vec{c}\) is inclined at the same angle \(\alpha\) to both \(\vec{a}\) and \(\vec{b}\), we can write: \[ \vec{c} \cdot \vec{a} = |\vec{c}||\vec{a}|\cos(\alpha) = 2 \cdot 1 \cdot \cos(\alpha) = 2\cos(\alpha) \] Calculating \(\vec{c} \cdot \vec{a}\): \[ \vec{c} \cdot \vec{a} = (x\vec{a} + y\vec{b} + \vec{a} \times \vec{b}) \cdot \vec{a} = x(\vec{a} \cdot \vec{a}) + y(\vec{b} \cdot \vec{a}) + (\vec{a} \times \vec{b}) \cdot \vec{a} \] Since \(\vec{b} \cdot \vec{a} = 0\) and \((\vec{a} \times \vec{b}) \cdot \vec{a} = 0\): \[ \vec{c} \cdot \vec{a} = x \] Thus, we have: \[ x = 2\cos(\alpha) \] Similarly, for \(\vec{c} \cdot \vec{b}\): \[ \vec{c} \cdot \vec{b} = (x\vec{a} + y\vec{b} + \vec{a} \times \vec{b}) \cdot \vec{b} = x(\vec{a} \cdot \vec{b}) + y(\vec{b} \cdot \vec{b}) + (\vec{a} \times \vec{b}) \cdot \vec{b} \] Again, since \(\vec{a} \cdot \vec{b} = 0\) and \((\vec{a} \times \vec{b}) \cdot \vec{b} = 0\): \[ \vec{c} \cdot \vec{b} = y \] Thus, we have: \[ y = 2\cos(\alpha) \] ### Step 5: Substitute \(x\) and \(y\) into the Equation Now substituting \(x\) and \(y\) into the equation \(x^2 + y^2 = 3\): \[ (2\cos(\alpha))^2 + (2\cos(\alpha))^2 = 3 \] This simplifies to: \[ 4\cos^2(\alpha) + 4\cos^2(\alpha) = 3 \] \[ 8\cos^2(\alpha) = 3 \] ### Final Answer Thus, the value of \(8\cos^2(\alpha)\) is: \[ \boxed{3} \]
Promotional Banner

Topper's Solved these Questions

  • VECTORS

    VMC MODULES ENGLISH|Exercise JEE ADVANCED (ARCHIVE) (TRUE/ FALSE)|30 Videos
  • VECTORS

    VMC MODULES ENGLISH|Exercise JEE ADVANCED (ARCHIVE)|36 Videos
  • TRIGONOMETRIC IDENTITIES AND EQUATIONS

    VMC MODULES ENGLISH|Exercise JEE Advanced (Archive)|11 Videos

Similar Questions

Explore conceptually related problems

Let vea, vecb and vecc be unit vectors such that veca.vecb=0 = veca.vecc . It the angle between vecb and vecc is pi/6 then find veca .

If veca , vecb , vecc are unit vectors such that veca+ vecb+ vecc= vec0 find the value of (veca* vecb+ vecb* vecc+ vecc*veca) .

If veca, vecb, vecc are vectors such that veca.vecb=0 and veca + vecb = vecc then:

If veca,vecb are two unit vectors such that veca+(veca xx vecb)=vecc , where |vecc|=2 , then value of [vecavecbvecc] is

If veca,vecbandvecc are unit vectors such that veca+vecb+vecc=0 , then the value of veca.vecb+vecb.vecc+vecc.veca is

If veca,vecbandvecc are unit vectors such that veca+vecb+vecc=0 , then the value of veca.vecb+vecb.vecc+vecc.veca is

Let veca and vecb are vectors such that |veca|=2, |vecb|=3 and veca. vecb=4 . If vecc=(3veca xx vecb)-4vecb , then |vecc| is equal to

If veca,vecb and vecc are unit vectors such that veca + vecb + vecc= 0 , then prove that veca.vecb+vecb.vecc+vecc.veca=-3/2

If veca, vecb, vecc are the unit vectors such that veca + 2vecb + 2vecc=0 , then |veca xx vecc| is equal to:

Let veca,vecb,vecc be unit vectors such that veca+vecb+vecc=vec0 . Which of the following is correct?