Home
Class 12
MATHS
Consider the cube in the first octant wi...

Consider the cube in the first octant with sides OP,OQ and OR of length 1, along the x-axis, y-axis and z-axis, respectively, where `O(0,0,0)` is the origin. Let `S(1/2,1/2,1/2)` be the centre of the cube and T be the vertex of the cube opposite to the origin O such that S lies on the diagonal OT. If `vec(p)=vec(SP), vec(q)=vec(SQ), vec(r)=vec(SR)` and `vec(t)=vec(ST)` then the value of `|(vec(p)xxvec(q))xx(vec(r)xx(vect))| is `

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to find the value of \( |(\vec{p} \times \vec{q}) \times (\vec{r} \times \vec{t})| \) where \( \vec{p} = \vec{SP} \), \( \vec{q} = \vec{SQ} \), \( \vec{r} = \vec{SR} \), and \( \vec{t} = \vec{ST} \). ### Step-by-Step Solution: 1. **Identify the Coordinates of Points:** - The origin \( O \) is at \( (0, 0, 0) \). - The center of the cube \( S \) is at \( \left(\frac{1}{2}, \frac{1}{2}, \frac{1}{2}\right) \). - The vertex opposite to \( O \) is \( T \) at \( (1, 1, 1) \). - The vertices \( P \), \( Q \), and \( R \) are at \( (1, 0, 0) \), \( (0, 1, 0) \), and \( (0, 0, 1) \) respectively. 2. **Calculate Vectors:** - \( \vec{SP} = \vec{P} - \vec{S} = (1, 0, 0) - \left(\frac{1}{2}, \frac{1}{2}, \frac{1}{2}\right) = \left(\frac{1}{2}, -\frac{1}{2}, -\frac{1}{2}\right) \) - \( \vec{SQ} = \vec{Q} - \vec{S} = (0, 1, 0) - \left(\frac{1}{2}, \frac{1}{2}, \frac{1}{2}\right) = \left(-\frac{1}{2}, \frac{1}{2}, -\frac{1}{2}\right) \) - \( \vec{SR} = \vec{R} - \vec{S} = (0, 0, 1) - \left(\frac{1}{2}, \frac{1}{2}, \frac{1}{2}\right) = \left(-\frac{1}{2}, -\frac{1}{2}, \frac{1}{2}\right) \) - \( \vec{ST} = \vec{T} - \vec{S} = (1, 1, 1) - \left(\frac{1}{2}, \frac{1}{2}, \frac{1}{2}\right) = \left(\frac{1}{2}, \frac{1}{2}, \frac{1}{2}\right) \) 3. **Cross Products:** - First, calculate \( \vec{p} \times \vec{q} \): \[ \vec{p} \times \vec{q} = \begin{vmatrix} \hat{i} & \hat{j} & \hat{k} \\ \frac{1}{2} & -\frac{1}{2} & -\frac{1}{2} \\ -\frac{1}{2} & \frac{1}{2} & -\frac{1}{2} \end{vmatrix} \] - Expanding this determinant gives: \[ = \hat{i} \left(-\frac{1}{2} \cdot -\frac{1}{2} - (-\frac{1}{2} \cdot \frac{1}{2})\right) - \hat{j} \left(\frac{1}{2} \cdot -\frac{1}{2} - (-\frac{1}{2} \cdot -\frac{1}{2})\right) + \hat{k} \left(\frac{1}{2} \cdot \frac{1}{2} - (-\frac{1}{2} \cdot -\frac{1}{2})\right) \] - This simplifies to: \[ = \hat{i} \left(\frac{1}{4} + \frac{1}{4}\right) - \hat{j} \left(-\frac{1}{4} - \frac{1}{4}\right) + \hat{k} \left(\frac{1}{4} - \frac{1}{4}\right) = \hat{i} \frac{1}{2} + \hat{j} \frac{1}{2} + 0\hat{k} \] - Next, calculate \( \vec{r} \times \vec{t} \): \[ \vec{r} \times \vec{t} = \begin{vmatrix} \hat{i} & \hat{j} & \hat{k} \\ -\frac{1}{2} & -\frac{1}{2} & \frac{1}{2} \\ \frac{1}{2} & \frac{1}{2} & \frac{1}{2} \end{vmatrix} \] - Expanding this determinant gives: \[ = \hat{i} \left(-\frac{1}{2} \cdot \frac{1}{2} - (-\frac{1}{2} \cdot \frac{1}{2})\right) - \hat{j} \left(-\frac{1}{2} \cdot \frac{1}{2} - \frac{1}{2} \cdot \frac{1}{2}\right) + \hat{k} \left(-\frac{1}{2} \cdot \frac{1}{2} - (-\frac{1}{2} \cdot -\frac{1}{2})\right) \] - This simplifies to: \[ = \hat{i} \left(-\frac{1}{4} + \frac{1}{4}\right) - \hat{j} \left(-\frac{1}{4} - \frac{1}{4}\right) + \hat{k} \left(-\frac{1}{4} + \frac{1}{4}\right) = 0\hat{i} + \hat{j}(-\frac{1}{2}) + 0\hat{k} \] 4. **Final Cross Product:** - Now calculate \( (\vec{p} \times \vec{q}) \times (\vec{r} \times \vec{t}) \): \[ \begin{vmatrix} \hat{i} & \hat{j} & \hat{k} \\ \frac{1}{2} & \frac{1}{2} & 0 \\ 0 & -\frac{1}{2} & 0 \end{vmatrix} \] - Expanding this determinant gives: \[ = \hat{i} \left(\frac{1}{2} \cdot 0 - 0 \cdot -\frac{1}{2}\right) - \hat{j} \left(\frac{1}{2} \cdot 0 - 0 \cdot \frac{1}{2}\right) + \hat{k} \left(\frac{1}{2} \cdot -\frac{1}{2} - \frac{1}{2} \cdot 0\right) \] - This simplifies to: \[ = 0\hat{i} + 0\hat{j} - \frac{1}{4}\hat{k} = -\frac{1}{4}\hat{k} \] 5. **Magnitude:** - Finally, calculate the magnitude: \[ |(\vec{p} \times \vec{q}) \times (\vec{r} \times \vec{t})| = \left| -\frac{1}{4}\hat{k} \right| = \frac{1}{4} \] ### Final Answer: The value of \( |(\vec{p} \times \vec{q}) \times (\vec{r} \times \vec{t})| \) is \( \frac{1}{4} \).
Promotional Banner

Topper's Solved these Questions

  • VECTORS

    VMC MODULES ENGLISH|Exercise JEE ADVANCED (ARCHIVE) (INTEGER TYPE)|4 Videos
  • VECTORS

    VMC MODULES ENGLISH|Exercise JEE ADVANCED (ARCHIVE) (TRUE/ FALSE)|30 Videos
  • VECTORS

    VMC MODULES ENGLISH|Exercise JEE MAIN (ARCHIVE)|60 Videos
  • TRIGONOMETRIC IDENTITIES AND EQUATIONS

    VMC MODULES ENGLISH|Exercise JEE Advanced (Archive)|11 Videos

Similar Questions

Explore conceptually related problems

Let O, O' and G be the circumcentre, orthocentre and centroid of a Delta ABC and S be any point in the plane of the triangle. Statement -1: vec(O'A) + vec(O'B) + vec(O'C)=2vec(O'O) Statement -2: vec(SA) + vec(SB) + vec(SC) = 3 vec(SG)

A vector vec r is inclined at equal acute angles of x-axis , y-axi s and z-a xi sdot if | vec r|=6 units, find vec rdot

Let vec(p),vec(q),vec(r) be three unit vectors such that vec(p)xxvec(q)=vec(r) . If vec(a) is any vector such that [vec(a)vec(q)vec(r )]=1,[vec(a)vec(r)vec(p )]=2 , and [vec(a)vec(p)vec(q )]=3 , then vec(a)=

OX, OY and OZ are three edges of a cube andn P,Q,R are the vertices of rectangle OXPY, OXQZ and OYSZ respectively. If vec(OX)=vecalpha, vec(OY)=vecbeta and vec(OZ)=vecgamma express vec(OP), vec(OQ), vec(OR) and vec(OS) in erms of vecalpha, vecbeta and vecgamma.

P(vec p) and Q(vec q) are the position vectors of two fixed points and R(vec r) is the position vectorvariable point. If R moves such that (vec r-vec p)xx(vec r -vec q)=0 then the locus of R is

Let vec a, vec b, and vec c be three non coplanar unit vectors such that the angle between every pair of them is pi/3 . If vec a xx vec b+ vecb xx vec x=p vec a + q vec b + r vec c where p,q,r are scalars then the value of (p^2+2q^2+r^2)/(q^2) is

Let vec a, vec b, and vec c be three non coplanar unit vectors such that the angle between every pair of them is pi/3 . If vec a xx vec b+ vecb xx vec c=p vec a + q vec b + r vec c where p,q,r are scalars then the value of (p^2+2q^2+r^2)/(q^2) is

If vec(a) and vec( b) are inclined at an angle of 120^(@) and |vec(a)| =1, |vec(b)|=2 , then t ((vec(a) + 3 vec(b)) xx (3 vec(a) - vec(b)))^(2) is equal to

Statement 1: In DeltaA B C , vec (A B)+ vec (BC)+ vec (C A)=0 Statement 2: If vec (O A)= vec a , vec (O B)= vec b ,t h e n \ vec (A B)= vec a+ vec b

Let vec a , vec ba n d vec c be three verctors such that vec a!=0,| vec a|=| vec c|=1,| vec b|=4 and | vec bxx vec c|=sqrt(15)dot If vec b-2 vec c=lambda vec a , then find the value of lambda

VMC MODULES ENGLISH-VECTORS -JEE ADVANCED (ARCHIVE)
  1. Let PQR be a triangle . Let veca=overline(QR),vecb = overline(RP) and ...

    Text Solution

    |

  2. Let O be the origin and let PQR be an arbitrary triangle. The point S ...

    Text Solution

    |

  3. Let O be the origin and vec(OX) , vec(OY) , vec(OZ) be three unit vec...

    Text Solution

    |

  4. Let O be the origin and vec(OX) , vec(OY) , vec(OZ) be three unit vec...

    Text Solution

    |

  5. The components of a vector veca along and perpendicular to a non-zero ...

    Text Solution

    |

  6. A, B C and D are four points in a plane with position vectors, veca, v...

    Text Solution

    |

  7. Let vecA , vecB and vecC be vectors of legth , 3,4and 5 respectively. ...

    Text Solution

    |

  8. If vecb and vecc are any two mutually perpendicular unit vectors and v...

    Text Solution

    |

  9. Find a unit vector pependicular to the plane determined by the points ...

    Text Solution

    |

  10. the area of the triangle whose vertices are A ( 1,-1,2) , B ( 1,2, -1)...

    Text Solution

    |

  11. Let vec(OA) =veca, vec(OB) = 10veca + 2vecb and vec(OC) =vecb where , ...

    Text Solution

    |

  12. If the vectors ahati+hatj+hatk, hati+bhatj+hatk, hati+hatj+chatk(a!=1,...

    Text Solution

    |

  13. If vecA,vecB,vecC are non-coplanar vectors than ( vecA . vecB xx vecC...

    Text Solution

    |

  14. If |(a,a^2,1+a^3),(b,b^2,1+b^3),(c,c^2,1+c^3)|=0 and vectors (1,a,a^2)...

    Text Solution

    |

  15. let veca , vecb and vecc be three vectors having magnitudes 1, 1 and 2...

    Text Solution

    |

  16. A non vector veca is parallel to the line of intersection of the plane...

    Text Solution

    |

  17. The vector(s) which is /are coplanar with vectors hati +hatj + 2hatk a...

    Text Solution

    |

  18. Let vecb= 4 hati + 3hatj and vecc be two vectors perpendicular to each...

    Text Solution

    |

  19. If vecA = ( 1,1,1) and vecC= (0, 1,-1) are given vectors the vector ve...

    Text Solution

    |

  20. Consider the cube in the first octant with sides OP,OQ and OR of lengt...

    Text Solution

    |