Home
Class 12
MATHS
Prove that the volume of the tetrahedron...

Prove that the volume of the tetrahedron and that formed by the centroids of the faces are in the ratio of `27:1.`

Promotional Banner

Topper's Solved these Questions

  • THREE DIMENSIONAL GEOMETRY

    VMC MODULES ENGLISH|Exercise NUMERICAL VALUE TYPE FOR JEE MAIN|14 Videos
  • THREE DIMENSIONAL GEOMETRY

    VMC MODULES ENGLISH|Exercise JEE MAIN (ARCHIVE)|87 Videos
  • THREE DIMENSIONAL GEOMETRY

    VMC MODULES ENGLISH|Exercise LEVEL-1|90 Videos
  • STRAIGHT LINES

    VMC MODULES ENGLISH|Exercise JEE Advanced Archive (State true or false: Q. 42)|1 Videos
  • TRIGONOMETRIC IDENTITIES AND EQUATIONS

    VMC MODULES ENGLISH|Exercise JEE Advanced (Archive)|11 Videos

Similar Questions

Explore conceptually related problems

If V be the volume of a tetrahedron and V ' be the volume of another tetrahedran formed by the centroids of faces of the previous tetrahedron and V=K V^(prime),t h e nK is equal to a. 9 b. 12 c. 27 d. 81

If V be the volume of a tetrahedron and V ' be the volume of another tetrahedran formed by the centroids of faces of the previous tetrahedron and V=K V^(prime),t h e nK is equal to a. 9 b. 12 c. 27 d. 81

Find the ratio of the volume of tetrahedron with that of the tetrahedron formed by the centroids of its faces. Given Volume of tetrahedron =1/3 times area of base triangle times height of vertex.

Prove that the lines joining the vertices of a tetrahedron to the centroids of opposite faces are concurrent.

i. Show that the lines joining the vertices of a tetrahedron to the centroids of opposite faces are concurrent. ii. Show that the joins of the midpoints of the opposite edges of a tetrahedron intersect and bisect each other.

Prove that the formula for the volume V of a tetrahedron, in terms of the lengths of three coterminous edges and their mutul inclinations is V^2=(a^2b^2c^2)/36 |(1,cosphi,cospsi),(cosphi,1,costheta),(cospsi, costheta, 1)|

Prove that the centroid of any triangle is the same as the centroid of the triangle formed by joining the middle points of its sides

The four lines drawing from the vertices of any tetrahedron to the centroid to the centroid of the opposite faces meet in a point whose distance from each vertex is 'k' times the distance from each vertex to the opposite face, where k is

Find the equation of a plane passing through (1, 1, 1) and parallel to the lines L_1 and L_2 direction ratios (1, 0,-1) and (1,-1, 0) respectively. Find the volume of the tetrahedron formed by origin and the points where this plane intersects the coordinate axes.

VMC MODULES ENGLISH-THREE DIMENSIONAL GEOMETRY -LEVEL-2
  1. A plane makes interceptsOA, OB and OC whose measurements are a, b and ...

    Text Solution

    |

  2. Let vectors veca, vecb veca and vecd be such that (veca xxvecb)xx (vec...

    Text Solution

    |

  3. The image of plane p (1) in the plane mirror p (2) is : Let two planes...

    Text Solution

    |

  4. Find the equation of a line : passing through the point vec c , paral...

    Text Solution

    |

  5. Find the equation of a line passing through the point vec c, parallel ...

    Text Solution

    |

  6. Prove that the shortest distance between the diagonals of a rectangula...

    Text Solution

    |

  7. The equation of the plane which passes through the line of intersect...

    Text Solution

    |

  8. Find the equation a plane containing the line vecr =t veca and perpend...

    Text Solution

    |

  9. Prove that the line of intersection of x + 2y + 3z=0 and 3x + zy+ z=0 ...

    Text Solution

    |

  10. Find the distance of the point (3,8,2) from the line vecr=hati + 3 hat...

    Text Solution

    |

  11. Find the vector equation of the plane vecr = 2 hati + hatj - 3 hatk + ...

    Text Solution

    |

  12. Show that the equation to the plane containing the line y/b+ z/c =1, x...

    Text Solution

    |

  13. Prove that the volume of the tetrahedron and that formed by the centro...

    Text Solution

    |

  14. In a regular tetrahedron, prove the following: The angle between any e...

    Text Solution

    |

  15. In a regular tetrahedron, prove that angle theta between any edge and ...

    Text Solution

    |

  16. A line L1 passing through a point with position vector p=i+2j+3k and ...

    Text Solution

    |

  17. A line L1 passing through a point with position vector p=i+2h+3k and ...

    Text Solution

    |

  18. For positive l, m and n, if the points x=ny+mz, y=lz+nx, z=mx+ly inter...

    Text Solution

    |

  19. Find area parallelogram lines y=mx, y=mx+1, y=nx and y=nx+1 equal to:

    Text Solution

    |

  20. For positive l, m and n, if the points x=ny+mz, y=lz+nx, z=mx+ly inter...

    Text Solution

    |