Home
Class 12
PHYSICS
What is the unit vector perpendicular to...

What is the unit vector perpendicular to the following Vector `2hat(i)+2hat(j)-hat(k)` and `6hat(i)-3hat(j)+2hat(k)?`

A

`(hati +10hat j-18 hatk)/(5sqrt(17))`

B

`(hati +10hat j+18 hatk)/(5sqrt(17))`

C

`(hati -10hat j-18 hatk)/(5sqrt(17))`

D

`(hati +10hat j+18 hatk)/(5sqrt(17))`

Text Solution

AI Generated Solution

The correct Answer is:
To find the unit vector that is perpendicular to the vectors \( \mathbf{A} = 2\hat{i} + 2\hat{j} - \hat{k} \) and \( \mathbf{B} = 6\hat{i} - 3\hat{j} + 2\hat{k} \), we will follow these steps: ### Step 1: Write down the vectors Let: \[ \mathbf{A} = 2\hat{i} + 2\hat{j} - \hat{k} \] \[ \mathbf{B} = 6\hat{i} - 3\hat{j} + 2\hat{k} \] ### Step 2: Compute the cross product \( \mathbf{A} \times \mathbf{B} \) The cross product of two vectors can be calculated using the determinant of a matrix formed by the unit vectors \( \hat{i}, \hat{j}, \hat{k} \) and the components of the vectors. \[ \mathbf{A} \times \mathbf{B} = \begin{vmatrix} \hat{i} & \hat{j} & \hat{k} \\ 2 & 2 & -1 \\ 6 & -3 & 2 \end{vmatrix} \] ### Step 3: Calculate the determinant Calculating the determinant, we expand it as follows: \[ \mathbf{A} \times \mathbf{B} = \hat{i} \begin{vmatrix} 2 & -1 \\ -3 & 2 \end{vmatrix} - \hat{j} \begin{vmatrix} 2 & -1 \\ 6 & 2 \end{vmatrix} + \hat{k} \begin{vmatrix} 2 & 2 \\ 6 & -3 \end{vmatrix} \] Calculating each of these 2x2 determinants: 1. For \( \hat{i} \): \[ 2 \cdot 2 - (-1) \cdot (-3) = 4 - 3 = 1 \] 2. For \( \hat{j} \): \[ 2 \cdot 2 - (-1) \cdot 6 = 4 + 6 = 10 \] 3. For \( \hat{k} \): \[ 2 \cdot (-3) - 2 \cdot 6 = -6 - 12 = -18 \] Putting it all together: \[ \mathbf{A} \times \mathbf{B} = \hat{i}(1) - \hat{j}(10) + \hat{k}(-18) = \hat{i} - 10\hat{j} - 18\hat{k} \] ### Step 4: Find the magnitude of the cross product Now, we need to find the magnitude of \( \mathbf{A} \times \mathbf{B} \): \[ |\mathbf{A} \times \mathbf{B}| = \sqrt{(1)^2 + (-10)^2 + (-18)^2} \] \[ = \sqrt{1 + 100 + 324} = \sqrt{425} \] ### Step 5: Calculate the unit vector The unit vector \( \mathbf{U} \) in the direction of \( \mathbf{A} \times \mathbf{B} \) is given by: \[ \mathbf{U} = \frac{\mathbf{A} \times \mathbf{B}}{|\mathbf{A} \times \mathbf{B}|} = \frac{\hat{i} - 10\hat{j} - 18\hat{k}}{\sqrt{425}} \] ### Final Result Thus, the unit vector perpendicular to both vectors is: \[ \mathbf{U} = \frac{1}{\sqrt{425}} \hat{i} - \frac{10}{\sqrt{425}} \hat{j} - \frac{18}{\sqrt{425}} \hat{k} \]

To find the unit vector that is perpendicular to the vectors \( \mathbf{A} = 2\hat{i} + 2\hat{j} - \hat{k} \) and \( \mathbf{B} = 6\hat{i} - 3\hat{j} + 2\hat{k} \), we will follow these steps: ### Step 1: Write down the vectors Let: \[ \mathbf{A} = 2\hat{i} + 2\hat{j} - \hat{k} \] \[ ...
Promotional Banner

Topper's Solved these Questions

  • INTRODUCTION TO VECTORS & FORCES

    VMC MODULES ENGLISH|Exercise level 2|65 Videos
  • INTRODUCTION TO VECTORS & FORCES

    VMC MODULES ENGLISH|Exercise JEE Main ( ARCHIVE ) ( LEVEL-1)|12 Videos
  • INTRODUCTION TO VECTORS & FORCES

    VMC MODULES ENGLISH|Exercise JEE Advanced ( ARCHIVE LEVEL-2)|12 Videos
  • GRAVITATION

    VMC MODULES ENGLISH|Exercise JEE Advance (Archive) TRUE/FALSE|1 Videos
  • JEE MAIN - 5

    VMC MODULES ENGLISH|Exercise PART I : PHYSICS (SECTION - 2)|5 Videos

Similar Questions

Explore conceptually related problems

Find a unit vector perpendicular to each of the vectors hat(i)+2hat(j)-3hat(k) and hat(i)-2hat(j)+hat(k) .

Find a unit vector perpendicular to both the vectors (2hat(i)+3hat(j)+hat(k)) and (hat(i)-hat(j)-2hat(k)) .

Find a unit vector perpendicular to the plane of two vectors a=hat(i)-hat(j)+2hat(k) and b=2hat(i)+3hat(j)-hat(k) .

Find the unit vector perpendicular the plane rcdot(2hat(i)+hat(j)+2hat(k))=5 .

Find the unit vector perpendicular to both 2hat(i) + 3hat(j)+ hat(k) and hat(i)-hat(j)+ 4hat(k)

Vector vec(A)=hat(i)+hat(j)-2hat(k) and vec(B)=3hat(i)+3hat(j)-6hat(k) are :

The number of unit vectors perpendicular to the vector vec(a) = 2 hat(i) + hat(j) + 2 hat(k) and vec(b) = hat(j) + hat(k) is

Find a vector perpendicular to vector vec(A)=(hat(i)+2hat(j)-3hat(k)) as well as vec(B)=(hat(i)+hat(j)-hat(k))

Find a unit vector perpendicular to both the vectors 4 hat i- hat j+3 hat k\ a n d-2 hat i+ hat j-2 hat kdot

Find the angle between the vectors 2 hat(i) - hat(j) - hat(k) and 3 hat(i) + 4 hat(j) - hat(k) .

VMC MODULES ENGLISH-INTRODUCTION TO VECTORS & FORCES -level 1
  1. A car is moving on horizontal ground with a velocity vm s^(-1) with ...

    Text Solution

    |

  2. An aeroplane pilot wishes to fly due west A wind of 100 km h^-1 is blo...

    Text Solution

    |

  3. A train 100 m long travelling at 40 ms^(-1) starts overtaking another ...

    Text Solution

    |

  4. The diagram shows a train moving with constant velocity and a car movi...

    Text Solution

    |

  5. A bird is flying towards north with a velocity 40 km h^-1 and a train ...

    Text Solution

    |

  6. Given vectoroverset(rarr)A=2 hat I +3hatj , the angle between overset...

    Text Solution

    |

  7. If the vectors 2 hati +3 hat j +chatj and -3hat i+6hatk are orthogo...

    Text Solution

    |

  8. Consider a F = 4hati -3hatj . Another vector perpendicular to F is

    Text Solution

    |

  9. The angle between the two vector -2hati+3hatj+hatk and hati+2hatj-4hat...

    Text Solution

    |

  10. For any two vectors barA and barB if barA.barB=|bar AxxbarB|, the ma...

    Text Solution

    |

  11. The angle between vector (overset(rarr)Axxoverset(rarr)B) and (overset...

    Text Solution

    |

  12. what is the angle between (overset(rarr)P+overset(rarr)Q) and (overset...

    Text Solution

    |

  13. Which of the following is the unit vector perrpendicular to A and B?

    Text Solution

    |

  14. A vector A points vertically upward and B points towards north.The vec...

    Text Solution

    |

  15. Two vectors P=2hat I +bhat j +2hat k and Q=hat i+hat j+hat k will be ...

    Text Solution

    |

  16. What is the unit vector perpendicular to the following Vector 2hat(i)+...

    Text Solution

    |

  17. The magnitude of the vector product of two vectors is sqrt(3) times th...

    Text Solution

    |

  18. A and B are two vectors in a plane at an angle of 60^(@) with each oth...

    Text Solution

    |

  19. Projection of overset(rarr)P on overset(rarr)Q is :

    Text Solution

    |

  20. What is the projection of vector overset(rarr)A=4hat I +3 hatj on vec...

    Text Solution

    |