Home
Class 12
PHYSICS
Two vectors vecA and vecB are defined as...

Two vectors `vecA` and `vecB` are defined as `vecA=ahati` and `vecB=a( cos omegahati+sin omega hatj)`, were a is a constant and `omega=pi//6 rads^(-1)`. If `|vecA+vecB|=sqrt(3)|vecA-vecB|` at time `t=tau` for the first time, the value of `tau`, in seconds , is _________

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to find the value of \( \tau \) such that the condition \( |\vec{A} + \vec{B}| = \sqrt{3} |\vec{A} - \vec{B}| \) holds true for the first time. ### Step-by-Step Solution: 1. **Define the vectors**: \[ \vec{A} = a \hat{i} \] \[ \vec{B} = a (\cos(\omega t) \hat{i} + \sin(\omega t) \hat{j}) \] where \( \omega = \frac{\pi}{6} \, \text{rad/s} \). 2. **Calculate \( \vec{A} + \vec{B} \)**: \[ \vec{A} + \vec{B} = a \hat{i} + a (\cos(\omega t) \hat{i} + \sin(\omega t) \hat{j}) = a(1 + \cos(\omega t)) \hat{i} + a \sin(\omega t) \hat{j} \] 3. **Calculate the magnitude of \( \vec{A} + \vec{B} \)**: \[ |\vec{A} + \vec{B}| = \sqrt{(a(1 + \cos(\omega t)))^2 + (a \sin(\omega t))^2} \] \[ = a \sqrt{(1 + \cos(\omega t))^2 + \sin^2(\omega t)} \] \[ = a \sqrt{1 + 2\cos(\omega t) + \cos^2(\omega t) + \sin^2(\omega t)} \] \[ = a \sqrt{2 + 2\cos(\omega t)} = a \sqrt{2(1 + \cos(\omega t))} = a \sqrt{4 \cos^2\left(\frac{\omega t}{2}\right)} = 2a \cos\left(\frac{\omega t}{2}\right) \] 4. **Calculate \( \vec{A} - \vec{B} \)**: \[ \vec{A} - \vec{B} = a \hat{i} - a (\cos(\omega t) \hat{i} + \sin(\omega t) \hat{j}) = a(1 - \cos(\omega t)) \hat{i} - a \sin(\omega t) \hat{j} \] 5. **Calculate the magnitude of \( \vec{A} - \vec{B} \)**: \[ |\vec{A} - \vec{B}| = \sqrt{(a(1 - \cos(\omega t)))^2 + (-a \sin(\omega t))^2} \] \[ = a \sqrt{(1 - \cos(\omega t))^2 + \sin^2(\omega t)} \] \[ = a \sqrt{1 - 2\cos(\omega t) + \cos^2(\omega t) + \sin^2(\omega t)} \] \[ = a \sqrt{2 - 2\cos(\omega t)} = a \sqrt{4 \sin^2\left(\frac{\omega t}{2}\right)} = 2a \sin\left(\frac{\omega t}{2}\right) \] 6. **Set up the equation**: According to the problem statement: \[ |\vec{A} + \vec{B}| = \sqrt{3} |\vec{A} - \vec{B}| \] Substituting the magnitudes we found: \[ 2a \cos\left(\frac{\omega t}{2}\right) = \sqrt{3} \cdot 2a \sin\left(\frac{\omega t}{2}\right) \] Dividing both sides by \( 2a \) (assuming \( a \neq 0 \)): \[ \cos\left(\frac{\omega t}{2}\right) = \sqrt{3} \sin\left(\frac{\omega t}{2}\right) \] 7. **Use the tangent function**: \[ \frac{\cos\left(\frac{\omega t}{2}\right)}{\sin\left(\frac{\omega t}{2}\right)} = \sqrt{3} \implies \tan\left(\frac{\omega t}{2}\right) = \frac{1}{\sqrt{3}} \] The angle for which \( \tan(\theta) = \frac{1}{\sqrt{3}} \) is \( \frac{\pi}{6} \): \[ \frac{\omega t}{2} = \frac{\pi}{6} \implies \omega t = \frac{\pi}{3} \] 8. **Solve for \( t \)**: Since \( \omega = \frac{\pi}{6} \): \[ \frac{\pi}{6} t = \frac{\pi}{3} \implies t = 2 \, \text{seconds} \] Thus, the value of \( \tau \) is \( \boxed{2} \) seconds.

To solve the problem, we need to find the value of \( \tau \) such that the condition \( |\vec{A} + \vec{B}| = \sqrt{3} |\vec{A} - \vec{B}| \) holds true for the first time. ### Step-by-Step Solution: 1. **Define the vectors**: \[ \vec{A} = a \hat{i} \] ...
Promotional Banner

Topper's Solved these Questions

  • Motion in Two Dimensions

    VMC MODULES ENGLISH|Exercise MCQ|2 Videos
  • Motion in Two Dimensions

    VMC MODULES ENGLISH|Exercise JEE Main (Archive)|19 Videos
  • Motion in Straight Line

    VMC MODULES ENGLISH|Exercise IN-CHAPTER EXERCISE-J|10 Videos
  • MOVING CHARGES & MAGNETISM

    VMC MODULES ENGLISH|Exercise IN-CHAPTER EXERCISE-K|10 Videos

Similar Questions

Explore conceptually related problems

Two vectors vecA and vecB are such that vecA+vecB=vecA-vecB . Then

If |vecA xx vecB| = sqrt3 vecA *vecB , then the value of |vecA + vecB| is :

if veca and vecb are unit vectors such that veca. vecb = cos theta , then the value of | veca + vecb| , is

The angle between vectors (vecA xx vecB) and (vecB xx vecA) is :

vecA and vecB are two vectors and theta is the angle between them, if |vecA xx vecB|=sqrt(3)(vecA.vecB) the value of theta is:-

If |vecA xx vecB| = vecA.vecB then the angle between vecA and vecB is :

If the vectors veca and vecb are mutually perpendicular, then veca xx {veca xx {veca xx {veca xx vecb}} is equal to:

If |vecA xx vecB| = |vecA*vecB| , then the angle between vecA and vecB will be :

vecA and vecB are two vectors. (vecA + vecB) xx (vecA - vecB) can be expressed as :

Two vectors vec A and vecB have equal magnitudes.If magnitude of (vecA+vecB) is equal to n times of the magnitude of (vecA-vecB) then the angle between vecA and vecB is :-

VMC MODULES ENGLISH-Motion in Two Dimensions-JEE Advanced (Archive)
  1. A ball is projected vertically upwards with a certain initial speed. A...

    Text Solution

    |

  2. A body is moving in a circular path with a constant speed. It has .

    Text Solution

    |

  3. A projectile is projected with a velocity u at an angle theta with the...

    Text Solution

    |

  4. Consider a disc rotating in the horizontal plane with a constant angul...

    Text Solution

    |

  5. A body falling freely from a given height H hits an inlclined plane in...

    Text Solution

    |

  6. Two guns situated at the top of a hill of height 10 m fire one shot ea...

    Text Solution

    |

  7. Two guns situated at the top of a hill of height 10 m fire one shot ea...

    Text Solution

    |

  8. On a frictionless horizontal surface , assumed to be the x-y plane ,...

    Text Solution

    |

  9. A particle of mass m moving with a speed u strikes a smooth horizontal...

    Text Solution

    |

  10. A train is moving along a straight line with a constant acceleration a...

    Text Solution

    |

  11. Two vectors vecA and vecB are defined as vecA=ahati and vecB=a( cos om...

    Text Solution

    |

  12. A ball is projected form the ground at an angle of 45^(@) with the hor...

    Text Solution

    |

  13. A ball is thrown from ground at an angle theta with horizontal and wit...

    Text Solution

    |

  14. STATEMENT -1 : For an observer looking out through the window of a fa...

    Text Solution

    |

  15. A spot light S rotates in a horizontal plane with a constant angular v...

    Text Solution

    |

  16. The trajectory of a projectile in a vertical plane is y = ax - bx^2, w...

    Text Solution

    |

  17. A large , heavy box is sliding without friction down a smooth plane o...

    Text Solution

    |

  18. An object A is kept fixed at the point x= 3 m and y = 1.25 m on a pl...

    Text Solution

    |

  19. A projectile fired from the ground follows a parabolic path. The speed...

    Text Solution

    |