Home
Class 12
PHYSICS
A source of sound of frequency 256Hz is ...

A source of sound of frequency `256Hz` is moving rapidly towards wall with a velocity of `5m//sec`. How many beats per second will be heard if sound travels at a speed of `330m//sec`.

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem of how many beats per second will be heard when a source of sound of frequency \(256 \, \text{Hz}\) is moving towards a wall at a velocity of \(5 \, \text{m/s}\), we can follow these steps: ### Step 1: Understand the Doppler Effect When a sound source moves towards a stationary observer (or wall in this case), the frequency of the sound heard by the observer changes due to the Doppler effect. The formula for the observed frequency \(f'\) when the source is moving towards a stationary observer is given by: \[ f' = \frac{v}{v - v_s} f \] where: - \(f'\) = observed frequency - \(v\) = speed of sound in air (\(330 \, \text{m/s}\)) - \(v_s\) = speed of the source (\(5 \, \text{m/s}\)) - \(f\) = original frequency of the source (\(256 \, \text{Hz}\)) ### Step 2: Calculate the Frequency Reflected from the Wall The sound reflects off the wall and acts as if the wall is a new source of sound. The frequency of the sound that returns to the observer (the original source) is given by: \[ f'' = \frac{v}{v + v_s} f' \] ### Step 3: Substitute \(f'\) into the Equation for \(f''\) Substituting the expression for \(f'\) into the equation for \(f''\): \[ f'' = \frac{v}{v + v_s} \left(\frac{v}{v - v_s} f\right) \] ### Step 4: Simplify the Expression Now we can simplify this expression: \[ f'' = \frac{v^2}{(v + v_s)(v - v_s)} f \] ### Step 5: Calculate Beat Frequency The beat frequency \(f_b\) is the absolute difference between the original frequency and the frequency of the sound after it reflects off the wall: \[ f_b = |f'' - f| \] ### Step 6: Substitute Values Now, we substitute the values into the equation: - \(v = 330 \, \text{m/s}\) - \(v_s = 5 \, \text{m/s}\) - \(f = 256 \, \text{Hz}\) Calculating \(f''\): \[ f'' = \frac{330^2}{(330 + 5)(330 - 5)} \cdot 256 \] Calculating the denominator: \[ (330 + 5)(330 - 5) = 335 \cdot 325 = 109375 \] Calculating \(f''\): \[ f'' = \frac{108900}{109375} \cdot 256 \approx 254.4 \, \text{Hz} \] ### Step 7: Calculate Beat Frequency Now, we calculate the beat frequency: \[ f_b = |254.4 - 256| \approx 1.6 \, \text{Hz} \] ### Final Result Thus, the number of beats per second heard is approximately \(1.6 \, \text{Hz}\). ---

To solve the problem of how many beats per second will be heard when a source of sound of frequency \(256 \, \text{Hz}\) is moving towards a wall at a velocity of \(5 \, \text{m/s}\), we can follow these steps: ### Step 1: Understand the Doppler Effect When a sound source moves towards a stationary observer (or wall in this case), the frequency of the sound heard by the observer changes due to the Doppler effect. The formula for the observed frequency \(f'\) when the source is moving towards a stationary observer is given by: \[ f' = \frac{v}{v - v_s} f \] ...
Promotional Banner

Topper's Solved these Questions

  • WAVE MOTION

    VMC MODULES ENGLISH|Exercise JEE ADVANCED ARCHIVE LEVEL 2 (FILL IN THE BLANKS)|17 Videos
  • WAVE MOTION

    VMC MODULES ENGLISH|Exercise JEE ADVANCED ARCHIVE LEVEL 2 (TRUE FALSE TYPE)|4 Videos
  • WAVE MOTION

    VMC MODULES ENGLISH|Exercise JEE ADVANCED ARCHIVE LEVEL 2 (MATRIX MATCH TYPE)|3 Videos
  • UNITS, MEASUREMENTS & ERRORS

    VMC MODULES ENGLISH|Exercise IN - CHAPTER EXERCISE - B|10 Videos
  • WORK ENERGY AND POWER

    VMC MODULES ENGLISH|Exercise IMPECCABLE|54 Videos

Similar Questions

Explore conceptually related problems

A source of sound of frequency 256 Hz moves rapidly towards a wall with a velocity of 5 ms^(-1). How many beats per second will be heard if sound travels at a speed of 330 m/s?

A vehicle sounding a whistle of frequency 256Hz is moving on a straight road,towards a hill with velocity of 10ms^-1 . The number of beats per second observed by a person travelling in the vehicle is (velocity of sound = 300ms^-1

A source of sound of frequency 500 Hz is moving towards an observer with velocity 30 m/s . The speed of sound is 330 m/s . the frequency heard by the observer will be

A car blowing a horn of frequency 350 Hz is moving normally towards a wall a speed of 5 m/s The beat frequency heard by a person standing between the car and wall is (speed of sound in air =350 m/s )

A man holding a tuning fork of frequency 90 hertz runs straight towards a stationary wall with velocity of 3.7 m/sec. The number of beats per second heard by him is (Speed of sound in air =340m/s.)

A whistle giving 700 Hz moves away from a stationary observer towards a wall with a velocity of 2 m/s. How many beats per second are heard by the observer ? [Velocity of sound = 348m/s]

A tuning fork of frequency 380 Hz is moving towards a wall with a velocity of 4(m)/(s) Then the number of beats heard by a stationary listener between direct and reflected sound will be (velocity of sound in air is 340(m)/(s) )

A source of sound with frequency 256 Hz is moving with a velocity V towards a wall and an observer is stationary between the source and the wall. When the observer is between the source and the wall he will hear beats.

A source of sound with frequency 256 Hz is moving with a velocity V towards a wall and an observer is stationary between the source and the wall. When the observer is between the source and the wall will he hear beats?

A tuning fork of frequency 256 h_(Z) is moving towards a well with a velocity of 5 m//s . If the speed of sound is 330 m//s , then the number of beats heard per second by a stationary observer lying between tuning fork and the well is

VMC MODULES ENGLISH-WAVE MOTION-JEE ADVANCED ARCHIVE LEVEL 2 (NUMERICAL VALUE TYPE)
  1. A tube of a certain diameter and of length 48cm is open at both ends. ...

    Text Solution

    |

  2. A source of sound of frequency 256Hz is moving rapidly towards wall wi...

    Text Solution

    |

  3. A string 25cm long and having a mass of 2.5 gm is under tension. A pip...

    Text Solution

    |

  4. A sonometer wire under tension of 64 N vibrating in its fundamental mo...

    Text Solution

    |

  5. A uniform rope of length 12 mm and mass 6 kg hangs vertically from a r...

    Text Solution

    |

  6. A steel wire of length 1m, mass 0.1kg and uniform cross-sectional area...

    Text Solution

    |

  7. Two tuning forks with natural frequencies 340 Hz each move relative to...

    Text Solution

    |

  8. A train approaching a hill at a speed of 40 km//hr sounds a whistle of...

    Text Solution

    |

  9. A source of sound is moving along a circular orbit of radius 3 m with ...

    Text Solution

    |

  10. Two radio stations broadcast their programmes at the same amplitude A ...

    Text Solution

    |

  11. A long wire PQR is made by joining two wires PQ and QR of equal radii....

    Text Solution

    |

  12. Two narrow cylindrical pipes A and B have the same length. Pipe A is o...

    Text Solution

    |

  13. In a resonance tube experiment to determine the speed of sound in air,...

    Text Solution

    |

  14. A whistling train approaches a junction. An observer standing at jucti...

    Text Solution

    |

  15. A 20 cm long string, having a mass of 1.0 g, is fixed at both the ends...

    Text Solution

    |

  16. A stationary source is emitting sound at a fixed frequency f(o), which...

    Text Solution

    |

  17. When two progressive waves y(1) = 4 sin (2x - 6t) and y(2) = 3 sin (2x...

    Text Solution

    |

  18. Four harmonic waves of equal freuencies and equal intensity I(0) have ...

    Text Solution

    |

  19. A stationary source emits the sound of frequency f0 = 492 Hz. The soun...

    Text Solution

    |

  20. Two men are walking along a horizontal straight line in the same direc...

    Text Solution

    |