Home
Class 12
MATHS
If the lines x(sinalpha+sinbeta)-ysin(al...

If the lines `x(sinalpha+sinbeta)-ysin(alpha-beta)=3` and `x(cosalpha+cosbeta)+ycos(alpha-beta)=5` are perpendicular then `sin2alpha+sin2beta` is equal to:

A

`sin(alpha-beta)-2sin(alpha+beta)`

B

`sin2(alpha-beta)-2sin(alpha+beta)`

C

`2sin(alpha-beta)-sin(alpha+beta)`

D

`sin2(alpha-beta)-sin(alpha+beta)`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to determine the value of \( \sin 2\alpha + \sin 2\beta \) given that the lines represented by the equations are perpendicular. ### Step 1: Write down the equations The equations given are: 1. \( x(\sin \alpha + \sin \beta) - y \sin(\alpha - \beta) = 3 \) (Equation 1) 2. \( x(\cos \alpha + \cos \beta) + y \cos(\alpha - \beta) = 5 \) (Equation 2) ### Step 2: Identify the slopes of the lines The slope of a line in the form \( Ax + By + C = 0 \) is given by \( m = -\frac{A}{B} \). For Equation 1: - \( A = \sin \alpha + \sin \beta \) - \( B = -\sin(\alpha - \beta) \) Thus, the slope \( m_1 \) is: \[ m_1 = -\frac{\sin \alpha + \sin \beta}{-\sin(\alpha - \beta)} = \frac{\sin \alpha + \sin \beta}{\sin(\alpha - \beta)} \] For Equation 2: - \( A = \cos \alpha + \cos \beta \) - \( B = \cos(\alpha - \beta) \) Thus, the slope \( m_2 \) is: \[ m_2 = -\frac{\cos \alpha + \cos \beta}{\cos(\alpha - \beta)} \] ### Step 3: Use the condition for perpendicular lines Two lines are perpendicular if the product of their slopes is -1: \[ m_1 \cdot m_2 = -1 \] Substituting the slopes: \[ \left(\frac{\sin \alpha + \sin \beta}{\sin(\alpha - \beta)}\right) \cdot \left(-\frac{\cos \alpha + \cos \beta}{\cos(\alpha - \beta)}\right) = -1 \] This simplifies to: \[ -\frac{(\sin \alpha + \sin \beta)(\cos \alpha + \cos \beta)}{\sin(\alpha - \beta) \cos(\alpha - \beta)} = -1 \] Removing the negative sign gives: \[ \frac{(\sin \alpha + \sin \beta)(\cos \alpha + \cos \beta)}{\sin(\alpha - \beta) \cos(\alpha - \beta)} = 1 \] ### Step 4: Cross-multiply to simplify Cross-multiplying gives: \[ (\sin \alpha + \sin \beta)(\cos \alpha + \cos \beta) = \sin(\alpha - \beta) \cos(\alpha - \beta) \] ### Step 5: Use trigonometric identities Using the identity \( \sin A \cos A = \frac{1}{2} \sin(2A) \): \[ \sin(\alpha - \beta) \cos(\alpha - \beta) = \frac{1}{2} \sin(2(\alpha - \beta)) \] ### Step 6: Expand the left-hand side Expanding the left-hand side: \[ \sin \alpha \cos \alpha + \sin \alpha \cos \beta + \sin \beta \cos \alpha + \sin \beta \cos \beta \] Using the identity \( \sin 2\alpha = 2 \sin \alpha \cos \alpha \) and \( \sin 2\beta = 2 \sin \beta \cos \beta \): \[ \frac{1}{2} \sin 2\alpha + \frac{1}{2} \sin 2\beta + \sin \alpha \cos \beta + \sin \beta \cos \alpha = \frac{1}{2} \sin(2(\alpha - \beta)) \] ### Step 7: Solve for \( \sin 2\alpha + \sin 2\beta \) From the equation, we can isolate \( \sin 2\alpha + \sin 2\beta \): \[ \sin 2\alpha + \sin 2\beta = \sin(2(\alpha - \beta)) - 2(\sin \alpha \cos \beta + \sin \beta \cos \alpha) \] Using the identity \( \sin A + \sin B = 2 \sin\left(\frac{A+B}{2}\right) \cos\left(\frac{A-B}{2}\right) \), we can express it in terms of \( \alpha \) and \( \beta \). ### Final Answer Thus, the final value of \( \sin 2\alpha + \sin 2\beta \) can be expressed as: \[ \sin 2\alpha + \sin 2\beta = \sin(2(\alpha - \beta)) - 2 \sin(\alpha + \beta) \]
Promotional Banner

Topper's Solved these Questions

  • STRAIGHT LINES

    VMC MODULES ENGLISH|Exercise Level -2|43 Videos
  • STRAIGHT LINES

    VMC MODULES ENGLISH|Exercise Level -2 Passage|5 Videos
  • STRAIGHT LINES

    VMC MODULES ENGLISH|Exercise Level - 0 (True or False)|7 Videos
  • SEQUENCE AND SERIES

    VMC MODULES ENGLISH|Exercise JEE MAIN & Advance ( ARCHIVE)|46 Videos
  • THREE DIMENSIONAL GEOMETRY

    VMC MODULES ENGLISH|Exercise JEE ADVANCED (ARCHIVE)|34 Videos

Similar Questions

Explore conceptually related problems

If 3sinbeta=sin(2alpha+beta) then

If sinalpha+sinbeta=a ,cosalpha+cosbeta=b=>sin(alpha+beta) =

sinalpha+sinbeta=a ,cosalpha+cosbeta=b=>sin(alpha+beta)

f(alpha,beta) = cos^2(alpha)+ cos^2(alpha+beta)- 2 cosalpha cosbeta cos(alpha+beta) is

If : sin (alpha + beta)=1 and sin (alpha-beta)=(1)/(2), "then" : tan (alpha+2beta)*tan(2alpha+beta)=

If cosalpha+cosbeta=0=sinalpha+sinbeta , then prove that cos2alpha +cos2beta=-2cos(alpha +beta) .

If cosalpha+cosbeta=0=sinalpha+sinbeta , then prove that cos2alpha+cos2beta+2cos(alpha+beta)=0

Prove that: cos2alpha\ cos2beta+sin^2(alpha-beta)-sin^2(alpha+beta)=cos2(alpha+beta) .

(sinalpha+sinbeta-sin(alpha+beta))/(sinalpha+sinbeta+sin(alpha+beta))=tan(alpha/2)tan(beta/2)

sin alpha+sinbeta=(1)/(4) and cos alpha+cos beta=(1)/(3) the value of sin(alpha+beta)

VMC MODULES ENGLISH-STRAIGHT LINES-Level -1
  1. If (x1-x2)^2+(y1-y2)^2=a^2, (x2-x3)^2+(y2-y3)^2=b^2, (x3-x1)^2+(y3-y1...

    Text Solution

    |

  2. The point P(a,b) lies on the straight line 3x+2y=13 and the point Q(b,...

    Text Solution

    |

  3. If the lines x(sinalpha+sinbeta)-ysin(alpha-beta)=3 and x(cosalpha+c...

    Text Solution

    |

  4. The vertex C of a triangle ABC moves on the line L-=3x+4y+5=0. The c...

    Text Solution

    |

  5. Line L has intercepts aa n db on the coordinate axes. When the axes ar...

    Text Solution

    |

  6. The point (alpha^(2)+2lamda+5,lamda^(2)+1) lies on the line x+y=10 ...

    Text Solution

    |

  7. The straight line passing through the point of intersection of the str...

    Text Solution

    |

  8. The base BC of a triangle ABC is bisected at the point (a, b) and equa...

    Text Solution

    |

  9. the image of the point A(2,3) by the line mirror y=x is the point B a...

    Text Solution

    |

  10. A point equidistant from the line 4x+3y+10=0,\ 5x-12 y+26=0\ a n d\ 7x...

    Text Solution

    |

  11. The bisector of the acute angle formed between the lines 4x - 3y + 7 ...

    Text Solution

    |

  12. The straight line through P(x1, y1) inclined at an angle theta with th...

    Text Solution

    |

  13. Find the equation of the line through (2,3) so that the segment of the...

    Text Solution

    |

  14. A straight line through the point (2,2) intersects the lines sqrt(3)x+...

    Text Solution

    |

  15. Consider the equation y-y1=m(x-x1) . If ma n dx1 are fixed and differe...

    Text Solution

    |

  16. The equation of line on which the perpendicular from the origin make 3...

    Text Solution

    |

  17. If the point A is symmetric to the point B(4,-1) with respect to the ...

    Text Solution

    |

  18. The straight lines x+2y-9=0,3x+5y-5=0 , and a x+b y-1=0 are concurrent...

    Text Solution

    |

  19. Let the algebraic sum of the perpendicular distance from the points (2...

    Text Solution

    |

  20. If u=a1x+b1y+c1=0,v=a2x+b2y+c2=0, and (a1)/(a2)=(b1)/(b2)=(c1)/(c2), t...

    Text Solution

    |