Home
Class 12
MATHS
A variable line L is drawn through O (0,...

A variable line L is drawn through O (0,0) to meet the lines L 1 ​ :y−x−10=0 and L 2 ​ :y−x−20=0 at the points A and B respectively. A point P is taken on L such that OP 2 ​ = OA 1 ​ + OB 1 ​ and P,A,B lies on same side of origin O. The locus of P is

A

`(y-x)^(2)=80`

B

`(y-x)^(2)=100`

C

`(y-x)^(2)=64`

D

None of these

Text Solution

Verified by Experts

The correct Answer is:
D
Promotional Banner

Topper's Solved these Questions

  • STRAIGHT LINES

    VMC MODULES ENGLISH|Exercise Numerical Value Type for JEE Main|15 Videos
  • STRAIGHT LINES

    VMC MODULES ENGLISH|Exercise JEE Main Archive|32 Videos
  • STRAIGHT LINES

    VMC MODULES ENGLISH|Exercise Level -2|43 Videos
  • SEQUENCE AND SERIES

    VMC MODULES ENGLISH|Exercise JEE MAIN & Advance ( ARCHIVE)|46 Videos
  • THREE DIMENSIONAL GEOMETRY

    VMC MODULES ENGLISH|Exercise JEE ADVANCED (ARCHIVE)|34 Videos

Similar Questions

Explore conceptually related problems

A variable line L drawn through O(0,0) to meet line l1: y-x-10=0 and L2:y-x-20=0 at the point A and B respectively then locus of point p is ' such that (OP)^(2) = OA . OB,

A point P is taken on 'L' such that 2/(OP) = 1/(OA) +1/(OB) , then the locus of P is

A variable line L is drawn through O(0,0) to meet the line L_(1) " and " L_(2) given by y-x-10 =0 and y-x-20=0 at Points A and B, respectively. Locus of P, if OP^(2) = OA xx OB , is a. (y+x)^(2) = 50 b. (y-x)^(2) = 200 c. (y-x)^(2) = 100 d. none of these

A variable line passing through point P(2,1) meets the axes at A and B . Find the locus of the circumcenter of triangle O A B (where O is the origin).

A line is a drawn from P(4,3) to meet the lines L_1 and l_2 given by 3x+4y+5=0 and 3x+4y+15=0 at points A and B respectively. From A , a line perpendicular to L is drawn meeting the line L_2 at A_1 Similarly, from point B_1 Thus a parallelogram AA_1 B B_1 is formed. Then the equation of L so that the area of the parallelogram AA_1 B B_1 is the least is (a) x-7y+17=0 (b) 7x+y+31=0 (c) x-7y-17=0 (d) x+7y-31=0

A variable line through the point P(2,1) meets the axes at A an d B . Find the locus of the centroid of triangle O A B (where O is the origin).

A variable line L passing through the point B(2, 5) intersects the lines 2x^2 - 5xy+2y^2 = 0 at P and Q. Find the locus of the point R on L such that distances BP, BR and BQ are in harmonic progression.

Point P divides the line segment joining the points A(-1,\ 3) and B(9,\ 8) such that (A P)/(B P)=k/1 . If P lies on the line x-y+2=0 , find the value of k .

Comprehension (Q.6 to 8) A line is drawn through the point P(-1,2) meets the hyperbola x y=c^2 at the points A and B (Points A and B lie on the same side of P) and Q is a point on the lien segment AB. If the point Q is choosen such that PQ, PQ and PB are inAP, then locus of point Q is x+y(1+2x) (b) x=y(1+x) 2x=y(1+2x) (d) 2x=y(1+x)

A straight line L through the origin meets the lines x + y = 1 and x + y = 3 at P and Q respectively. Through P and Q two straight lines L_1 , and L_2 are drawn, parallel to 2x-y- 5 and 3x +y 5 respectively. Lines L_1 and L_2 intersect at R. Locus of R, as L varies, is