Home
Class 12
MATHS
Find lambda if (lambda, lambda +1) is an...

Find `lambda` if `(lambda, lambda +1)` is an interior point of `Delta ABC` where,`A-=(0,3), B-= (-2,0)` and `C -= (5, 1)`.

Text Solution

Verified by Experts

The correct Answer is:
2
Promotional Banner

Topper's Solved these Questions

  • STRAIGHT LINES

    VMC MODULES ENGLISH|Exercise JEE Main Archive|32 Videos
  • STRAIGHT LINES

    VMC MODULES ENGLISH|Exercise JEE Main Archive (State true or false: Q. 16 to 18)|3 Videos
  • STRAIGHT LINES

    VMC MODULES ENGLISH|Exercise Level -2 Passage|5 Videos
  • SEQUENCE AND SERIES

    VMC MODULES ENGLISH|Exercise JEE MAIN & Advance ( ARCHIVE)|46 Videos
  • THREE DIMENSIONAL GEOMETRY

    VMC MODULES ENGLISH|Exercise JEE ADVANCED (ARCHIVE)|34 Videos

Similar Questions

Explore conceptually related problems

Find lambda if (lambda, lambda +1) is an interior point of Delta ABC where, A-=(0,3), B-= (-2,0) and C -= (6, 1) .

Find lambda if (lambda , 2) is an interior point of Delta ABC formed by x + y = 4, 3x-7y = 8 and 4 x - y = 31

"Let "plambda^(4) + qlambda^(3) +rlambda^(2) + slambda +t =|{:(lambda^(2)+3lambda,lambda-1, lambda+3),(lambda+1, -2lambda, lambda-4),(lambda-3, lambda+4, 3lambda):}| be an identity in lambda , where p,q,r,s and t are constants. Then, the value of t is..... .

Value of lambda for which (lambda,lambda^2) lies between the lines |x+2y|=3 is (a) ( -1/2,2) (b) (-3/2,2) (c) (-3/2,1) (d) (-1,3/2)

ABC is a variable triangle such that A is (1, 2), and B and C on the line y=x+lambda(lambda is a variable). Then the locus of the orthocentre of DeltaA B C is (a) x+y=0 (b) x-y=0 x^2+y^2=4 (d) x+y=3

Find the value of lambda . If the points A(-1,3,2), B(-4,2,-2) and C(5,lambda,10) are collinear.

The values of lambda for which the function f(x)=lambdax^3-2lambdax^2+(lambda+1)x+3lambda is increasing through out number line (a) lambda in (-3,3) (b) lambda in (-3,0) (c) lambda in (0,3) (d) lambda in (1,3)

If vec a is a nonzero vector of magnitude a and lambda a nonzero scalar, then lambda vec a is unit vector if (A) lambda = 1 (B) lambda= -1 (C) a = |lambda| (D) a = 1/(|lambda|)

If the points A(lambda, 2lambda), B(3lambda,3lambda) and C(3,1) are collinear, then lambda=

A B C is a variable triangle such that A is (1,2) and B and C lie on line y=x+lambda (where lambda is a variable). Then the locus of the orthocentre of triangle A B C is (a) (x-1)^2+y^2=4 (b) x+y=3 (c) 2x-y=0 (d) none of these