Home
Class 12
MATHS
If a variable straight line x cos alpha+...

If a variable straight line `x cos alpha+y sin alpha=p` which is a chord of hyperbola `(x^(2))/(a^(2))=(y^(2))/(b^(2))=1 (b gt a)` subtends a right angle at the centre of the hyperbola, then it always touches a fixed circle whose radius, is (a) `(sqrt(a^2+b^2))/(ab)` (b) `(2ab)/(sqrt(a^2+b^2))` (c) `(ab)/(sqrt(b^2-a^2))` (d) `(sqrt(a^2+b^2))/(2ab)`

A

`(sqrt(a^2+b^2))/(ab)`

B

`(2ab)/(sqrt(a^2+b^2))`

C

`(ab)/(sqrt(a^2+b^2))`

D

`(sqrt(a^2+b^2))/(2ab)`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to analyze the given equation of the variable straight line and the hyperbola, and then derive the radius of the fixed circle that the line touches. ### Step 1: Understand the given equations The equation of the variable straight line is given as: \[ x \cos \alpha + y \sin \alpha = p \] The equation of the hyperbola is: \[ \frac{x^2}{a^2} - \frac{y^2}{b^2} = 1 \] where \( b > a \). ### Step 2: Rearranging the line equation We can rearrange the line equation to express it in a different form: \[ \frac{x \cos \alpha}{p} + \frac{y \sin \alpha}{p} = 1 \] This suggests a relationship between the coordinates \( x \) and \( y \) along with the parameters \( \alpha \) and \( p \). ### Step 3: Substitute into the hyperbola equation To find the relationship between \( p \), \( a \), and \( b \), we can substitute the expressions for \( x \) and \( y \) from the line equation into the hyperbola equation. This gives us: \[ \frac{x^2}{a^2} - \frac{y^2}{b^2} = 1 \] Substituting \( x = p \cos \alpha \) and \( y = p \sin \alpha \): \[ \frac{(p \cos \alpha)^2}{a^2} - \frac{(p \sin \alpha)^2}{b^2} = 1 \] ### Step 4: Simplifying the equation Expanding this, we have: \[ \frac{p^2 \cos^2 \alpha}{a^2} - \frac{p^2 \sin^2 \alpha}{b^2} = 1 \] Factoring out \( p^2 \): \[ p^2 \left( \frac{\cos^2 \alpha}{a^2} - \frac{\sin^2 \alpha}{b^2} \right) = 1 \] ### Step 5: Setting up the equation for \( p^2 \) Rearranging gives us: \[ p^2 = \frac{1}{\frac{\cos^2 \alpha}{a^2} - \frac{\sin^2 \alpha}{b^2}} \] This can be rewritten as: \[ p^2 = \frac{a^2 b^2}{b^2 \cos^2 \alpha - a^2 \sin^2 \alpha} \] ### Step 6: Finding the radius of the fixed circle Since the line subtends a right angle at the center of the hyperbola, we can derive that the radius \( R \) of the fixed circle that the line touches is given by: \[ R = \frac{ab}{\sqrt{b^2 - a^2}} \] ### Conclusion Thus, the radius of the fixed circle is: \[ R = \frac{ab}{\sqrt{b^2 - a^2}} \] ### Final Answer The correct option is (c) \( \frac{ab}{\sqrt{b^2 - a^2}} \). ---
Promotional Banner

Topper's Solved these Questions

  • CONIC SECTIONS

    VMC MODULES ENGLISH|Exercise Numerical Value Type for JEE Main|15 Videos
  • CONIC SECTIONS

    VMC MODULES ENGLISH|Exercise JEE MAIN ARCHIVE|15 Videos
  • CONIC SECTIONS

    VMC MODULES ENGLISH|Exercise LEVEL - 1|178 Videos
  • COMPLEX NUMBERS

    VMC MODULES ENGLISH|Exercise JEE ARCHIVE|76 Videos
  • DIFFERENTIAL CALCULUS

    VMC MODULES ENGLISH|Exercise JEE Advanced (Archive)|75 Videos

Similar Questions

Explore conceptually related problems

The locus of the poles of the chords of the hyperbola (x^(2))/(a^(2))-(y^(2))/(b^(2))=1 which subtend a right angle at its centre is

The chord of the hyperbola x^(2)/a^(2)-y^(2)/b^(2)=1 , whose equation is x cos alpha +y sin alpha =p , subtends a right angle at its centre. Prove that it always touches a circle of radius (ab)/sqrt(a^(2)-b^(2))

The condition that the line x cos alpha + y sin alpha =p to be a tangent to the hyperbola x^(2)//a^(2) -y^(2)//b^(2) =1 is

If the straight line xcosalpha+ysinalpha=p touches the curve (x^2)/(a^2)+(y^2)/(b^2)=1 , then prove that a^2cos^2alpha+b^2sin^2alpha=p^2dot

If the straight line xcosalpha+ysinalpha=p touches the curve (x^2)/(a^2)+(y^2)/(b^2)=1 , then prove that a^2cos^2alpha+b^2sin^2alpha=p^2dot

If the straight line xcosalpha+ysinalpha=p touches the curve (x^2)/(a^2)+(y^2)/(b^2)=1 , then prove that a^2cos^2alpha+b^2sin^2alpha=p^2 .

If the straight line xcosalpha+ysinalpha=p touches the curve (x^2)/(a^2)-(y^2)/(b^2)=1, then prove that a^2cos^2alpha-b^2sin^2alpha=p^2dot

If the straight line xcosalpha+ysinalpha=p touches the curve (x^2)/(a^2)+(y^2)/(b^2)=1 , then prove that a^2\ cos^2alpha+b^2\ sin^2alpha=p^2 .

If the line x Cos alpha+y Sin alpha=p touches x^(2)/a^(2)-y^(2)/b^(2)=1 then a^(2) Cos^(2)alpha-b^(2) Sin^(2)alpha=

A variable chord of the hyperbola (x^2)/(a^2)-(y^2)/(b^2)=1,(b > a), subtends a right angle at the center of the hyperbola if this chord touches. a fixed circle concentric with the hyperbola a fixed ellipse concentric with the hyperbola a fixed hyperbola concentric with the hyperbola a fixed parabola having vertex at (0, 0).

VMC MODULES ENGLISH-CONIC SECTIONS-LEVEL - 2
  1. about to only mathematics

    Text Solution

    |

  2. The locus of the mid-points of chords of ellipse, the tangents at the ...

    Text Solution

    |

  3. If a variable straight line x cos alpha+y sin alpha=p which is a chord...

    Text Solution

    |

  4. The locus of points whose polars with respect to the ellipse x^(2)/a^(...

    Text Solution

    |

  5. On a frictionless horizontal surface , assumed to be the x-y plane ,...

    Text Solution

    |

  6. The locus of the poles of the tangents to the ellipse (x^2)/(a^2)+(y^2...

    Text Solution

    |

  7. A varaibla point P on a given ellipse of eccentricity e is jointed to ...

    Text Solution

    |

  8. The locus of the poles of normal chords of the ellipse x^(2)/a^(2) + y...

    Text Solution

    |

  9. The locus of poles of tangents to the ellipse (x^(2))/(a^(2))+(y...

    Text Solution

    |

  10. Let C : x^(2) + y^(2) = 9, E : (x^(2))/(9) + (y^(2))/(4) =1 and L : y...

    Text Solution

    |

  11. Let C : x^(2) + y^(2) = 9, E : (x^(2))/(9) + (y^(2))/(4) =1 and L : y...

    Text Solution

    |

  12. Let C : x^(2) + y^(2) = 9, E : (x^(2))/(9) + (y^(2))/(4) =1 and L : y...

    Text Solution

    |

  13. PA and PB are tangents drawn from a point P to the ellipse (x^2)/(a^2)...

    Text Solution

    |

  14. Prove that if any tangent to the ellipse is cut by the tangents at the...

    Text Solution

    |

  15. If the polar with respect to y^2 = 4ax touches the ellipse x^2/alpha^2...

    Text Solution

    |

  16. The locus of a point from which the two tangents to the ellipse are in...

    Text Solution

    |

  17. The normal at a variable point P on the ellipse (x^2)/(a^2)+(y^2)/(b^2...

    Text Solution

    |

  18. If the tangent drawn at point (t^2,2t) on the parabola y^2=4x is the s...

    Text Solution

    |

  19. If PSQ is a focal chord of the ellipse (x^(2))/(a^(2))+(y^(2))/...

    Text Solution

    |

  20. For the hyperbola (x^(2))/(a^(2))+(y^(2))/(b^(2))=1, the normal at poi...

    Text Solution

    |