Home
Class 12
MATHS
A varaibla point P on a given ellipse of...

A varaibla point `P` on a given ellipse of eccentricity `e` is jointed to its foci `S` and `S\'`. Let `I` be the incentre of `DeltaPSS\'` and curve `C\' be the locus of `I`. If `l and l\'` be the lengths of laters recta of the given ellipse and curve `C`, then `l/l\' =` (A) `(1+e)^2/e` (B) `e/(1+e)^2` (C) `e/(1-e)^2` (D) `(1-e)^2/e`

A

`sqrt((e )/(1+e))`

B

`sqrt((2e)/(1+e))`

C

`sqrt((3e)/(1+e))`

D

None of these

Text Solution

Verified by Experts

The correct Answer is:
B
Promotional Banner

Topper's Solved these Questions

  • CONIC SECTIONS

    VMC MODULES ENGLISH|Exercise Numerical Value Type for JEE Main|15 Videos
  • CONIC SECTIONS

    VMC MODULES ENGLISH|Exercise JEE MAIN ARCHIVE|15 Videos
  • CONIC SECTIONS

    VMC MODULES ENGLISH|Exercise LEVEL - 1|178 Videos
  • COMPLEX NUMBERS

    VMC MODULES ENGLISH|Exercise JEE ARCHIVE|76 Videos
  • DIFFERENTIAL CALCULUS

    VMC MODULES ENGLISH|Exercise JEE Advanced (Archive)|75 Videos

Similar Questions

Explore conceptually related problems

A varaibla point P on a given ellipse of eccentricity e is jointed to its foci S and S\' . Let I be the incentre of DeltaPSS\' and curve C\' be the locus of I . Curve C is a conic which is : (A) a parabola (B) a hyperbola which is not a rectangular hyperbola (C) an ellipse (D) a rectangular hyperbola

A variable point P on the ellipse of eccentricity e is joined to the foci S and S' . The eccentricity of the locus of incentre of the triangle PSS' is (A) sqrt((2e)/(1+e)) (B) sqrt(e/(1+e)) (C) sqrt((1-e)/(1+e)) (D) e/(2(1+e))

If alpha and beta are eccentric angles of the ends of a focal chord of the ellipse x^2/a^2 + y^2/b^2 =1 , then tan alpha/2 .tan beta/2 is (A) (1-e)/(1+e) (B) (e+1)/(e-1) (C) (e-1)/(e+1) (D) none of these

The sum of series 1/2!+1/4!+16!+………. is (A) (e^2-1)/2 (B) (e^2-2)/e (C) (e^2-1)/(2e) (D) )(e-1)^2)/(2e)

The normal at an end of a latus rectum of the ellipse x^2/a^2 + y^2/b^2 = 1 passes through an end of the minor axis if (A) e^4+e^2=1 (B) e^3+e^2=1 (C) e^2+e=1 (D) e^3+e=1

The difference between the lengths of the major axis and the latus rectum of an ellipse is a. a e b. 2a e c. a e^2 d. 2a e^2

If e_1 is the eccentricity of the ellipse x^2/16+y^2/25=1 and e_2 is the eccentricity of the hyperbola passing through the foci of the ellipse and e_1 e_2=1 , then equation of the hyperbola is

The maximum value of (logx)/x is (a) 1 (b) 2/e (c) e (d) 1/e

The normal at P to a hyperbola of eccentricity e , intersects its transverse and conjugate axes at L and M respectively. Show that the locus of the middle point of LM is a hyperbola of eccentricity e/sqrt(e^2-1)

The normal at a variable point P on the ellipse (x^2)/(a^2)+(y^2)/(b^2)=1 of eccentricity e meets the axes of the ellipse at Qa n dRdot Then the locus of the midpoint of Q R is a conic with eccentricity e ' such that (a) e^(prime) is independent of e (b) e^(prime)=1 (c) e^(prime)=e (d) e^(prime)=1/e

VMC MODULES ENGLISH-CONIC SECTIONS-LEVEL - 2
  1. On a frictionless horizontal surface , assumed to be the x-y plane ,...

    Text Solution

    |

  2. The locus of the poles of the tangents to the ellipse (x^2)/(a^2)+(y^2...

    Text Solution

    |

  3. A varaibla point P on a given ellipse of eccentricity e is jointed to ...

    Text Solution

    |

  4. The locus of the poles of normal chords of the ellipse x^(2)/a^(2) + y...

    Text Solution

    |

  5. The locus of poles of tangents to the ellipse (x^(2))/(a^(2))+(y...

    Text Solution

    |

  6. Let C : x^(2) + y^(2) = 9, E : (x^(2))/(9) + (y^(2))/(4) =1 and L : y...

    Text Solution

    |

  7. Let C : x^(2) + y^(2) = 9, E : (x^(2))/(9) + (y^(2))/(4) =1 and L : y...

    Text Solution

    |

  8. Let C : x^(2) + y^(2) = 9, E : (x^(2))/(9) + (y^(2))/(4) =1 and L : y...

    Text Solution

    |

  9. PA and PB are tangents drawn from a point P to the ellipse (x^2)/(a^2)...

    Text Solution

    |

  10. Prove that if any tangent to the ellipse is cut by the tangents at the...

    Text Solution

    |

  11. If the polar with respect to y^2 = 4ax touches the ellipse x^2/alpha^2...

    Text Solution

    |

  12. The locus of a point from which the two tangents to the ellipse are in...

    Text Solution

    |

  13. The normal at a variable point P on the ellipse (x^2)/(a^2)+(y^2)/(b^2...

    Text Solution

    |

  14. If the tangent drawn at point (t^2,2t) on the parabola y^2=4x is the s...

    Text Solution

    |

  15. If PSQ is a focal chord of the ellipse (x^(2))/(a^(2))+(y^(2))/...

    Text Solution

    |

  16. For the hyperbola (x^(2))/(a^(2))+(y^(2))/(b^(2))=1, the normal at poi...

    Text Solution

    |

  17. CP and CD are conjugate diameters of ellipse (x^2)/(a^2)+(y^2)/(b^2)=1...

    Text Solution

    |

  18. If C is the center and A ,B are two points on the conic 4x^2+9y^...

    Text Solution

    |

  19. Variable ellipses are drawn with x= -4 as a directrix and origin as co...

    Text Solution

    |

  20. An endless inextensible string of length 15 m passes around two pins, ...

    Text Solution

    |