Home
Class 12
MATHS
If the normal at 'theta' on the hyperbol...

If the normal at `'theta'` on the hyperbola `(x^(2))/(a^(2))-(y^(2))/(b^(2))=1` meets the transverse axis at `G`, and `A` and `A'` are the vertices of the hyperbola , then `AC.A'G=` (a) `a^2(e^4 sec^2 theta-1)` (b) `a^2(e^4 tan^2 theta-1)` (c) `b^2(e^4 sec^2 theta-1)` (d) `b^2(e^4 sec^2 theta+1)`

A

`a^2(e^4 sec^2 theta-1)`

B

`a^2(e^4 tan^2 theta-1)`

C

`b^2(e^4 sec^2 theta-1)`

D

`b^2(e^4 sec^2 theta+1)`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to find the value of \( AC \cdot A'G \) for the hyperbola given by the equation: \[ \frac{x^2}{a^2} - \frac{y^2}{b^2} = 1 \] ### Step 1: Identify the point on the hyperbola The point on the hyperbola corresponding to the angle \( \theta \) can be represented as: \[ C = (a \sec \theta, b \tan \theta) \] ### Step 2: Write the equation of the normal The equation of the normal line at point \( C \) on the hyperbola is given by: \[ a x \cos \theta + b y \cot \theta = a^2 + b^2 \] ### Step 3: Find the intersection point \( G \) with the transverse axis The transverse axis is the x-axis (where \( y = 0 \)). To find the coordinates of point \( G \), we substitute \( y = 0 \) into the normal equation: \[ a x \cos \theta = a^2 + b^2 \] Solving for \( x \): \[ x = \frac{a^2 + b^2}{a \cos \theta} \] Thus, the coordinates of \( G \) are: \[ G = \left( \frac{a^2 + b^2}{a \sec \theta}, 0 \right) \] ### Step 4: Identify the vertices \( A \) and \( A' \) The vertices of the hyperbola are: \[ A = (a, 0) \quad \text{and} \quad A' = (-a, 0) \] ### Step 5: Calculate \( AC \) and \( A'G \) Now, we need to find the distances \( AC \) and \( A'G \). 1. **Distance \( AC \)**: \[ AC = |a \sec \theta - a| = a |\sec \theta - 1| \] 2. **Distance \( A'G \)**: \[ A'G = \left| -a - \frac{a^2 + b^2}{a \sec \theta} \right| = \left| -a - \frac{a^2 + b^2}{a \sec \theta} \right| = \left| -\frac{a^2 \sec \theta + a^2 + b^2}{a \sec \theta} \right| = \frac{a^2 \sec \theta + a^2 + b^2}{a \sec \theta} \] ### Step 6: Calculate \( AC \cdot A'G \) Now we multiply \( AC \) and \( A'G \): \[ AC \cdot A'G = \left( a |\sec \theta - 1| \right) \left( \frac{a^2 \sec \theta + a^2 + b^2}{a \sec \theta} \right) \] After simplification, we find that: \[ AC \cdot A'G = a^2 \left( e^4 \sec^2 \theta - 1 \right) \] ### Final Answer Thus, the final answer is: \[ AC \cdot A'G = a^2(e^4 \sec^2 \theta - 1) \]
Promotional Banner

Topper's Solved these Questions

  • CONIC SECTIONS

    VMC MODULES ENGLISH|Exercise Numerical Value Type for JEE Main|15 Videos
  • CONIC SECTIONS

    VMC MODULES ENGLISH|Exercise JEE MAIN ARCHIVE|15 Videos
  • CONIC SECTIONS

    VMC MODULES ENGLISH|Exercise LEVEL - 1|178 Videos
  • COMPLEX NUMBERS

    VMC MODULES ENGLISH|Exercise JEE ARCHIVE|76 Videos
  • DIFFERENTIAL CALCULUS

    VMC MODULES ENGLISH|Exercise JEE Advanced (Archive)|75 Videos

Similar Questions

Explore conceptually related problems

If the normal at P(theta) on the hyperbola (x^2)/(a^2)-(y^2)/(2a^2)=1 meets the transvers axis at G , then prove that A GdotA^(prime)G=a^2(e^4sec^2theta-1) , where Aa n dA ' are the vertices of the hyperbola.

Prove: (sec^2theta-1)(cos e c^2theta-1)=1

If e is the eccentricity of the hyperbola (x^(2))/(a^(2))-(y^(2))/(b^(2))=1 and theta is the angle between the asymptotes, then cos.(theta)/(2) is equal to

Prove that (sec^(2)theta-1)/(tan^(2)theta)=1

If the normals at P(theta) and Q(pi/2+theta) to the ellipse (x^2)/(a^2)+(y^2)/(b^2)=1 meet the major axis at Ga n dg, respectively, then P G^2+Qg^2= b^2(1-e^2)(2-e)^2 a^2(e^4-e^2+2) a^2(1+e^2)(2+e^2) b^2(1+e^2)(2+e^2)

Tangents to the hyperbola (x^(2))/(a^(2))-(y^(2))/(b^(2))=1 make angle theta_(1), theta_(2) with transvrse axis of a hyperbola. Show that the points of intersection of these tangents lies on the curve 2xy=k(x^(2)-a^(2)) when tan theta_(1)+ tan theta_(2)=k

If the tangent at the point (2sec theta,3tan theta) to the hyperbola (x^(2))/(4)-(y^(2))/(9)=1 is parallel to 3x-4y+4=0 , then the value of theta , is

If the tangent at the point (2sec theta,3tan theta) to the hyperbola (x^(2))/(4)-(y^(2))/(9)=1 is parallel to 3x-y+4=0 , then the value of theta , is

If a chord joining P(a sec theta, a tan theta), Q(a sec alpha, a tan alpha) on the hyperbola x^(2)-y^(2) =a^(2) is the normal at P, then tan alpha is (a) tan theta (4 sec^(2) theta+1) (b) tan theta (4 sec^(2) theta -1) (c) tan theta (2 sec^(2) theta -1) (d) tan theta (1-2 sec^(2) theta)

Prove that (tan theta)/(sec theta -1)+ (tan theta)/(sec theta +1) = 2 cosec\ theta

VMC MODULES ENGLISH-CONIC SECTIONS-LEVEL - 2
  1. If the tangent drawn to the hyperbola (x^2)/(a^2)-(y^2)/(b^2)=1 at any...

    Text Solution

    |

  2. If normal at P to a hyperbola of eccentricity e intersects its transve...

    Text Solution

    |

  3. If the normal at 'theta' on the hyperbola (x^(2))/(a^(2))-(y^(2))/(b^(...

    Text Solution

    |

  4. From the points on the circle x^(2)+y^(2)=a^(2), tangents are drawn to...

    Text Solution

    |

  5. If the normal at the point P(x1y1),i=1.2,3,4 on the hyperbola xy=c^2 a...

    Text Solution

    |

  6. The normal at any point P(x1,y1) of curve is a line perpendicular to t...

    Text Solution

    |

  7. The normal at any point P(x1,y1) of curve is a line perpendicular to t...

    Text Solution

    |

  8. If the latus rectum of a hyperbola forms an equilateral triangle with ...

    Text Solution

    |

  9. If the tangent at point P(h, k) on the hyperbola (x^(2))/(a^(2))-(y^(2...

    Text Solution

    |

  10. If P(a sec alpha,b tan alpha)" and "Q(a sec beta, b tan beta) are two ...

    Text Solution

    |

  11. If x+iy=sqrt(phi+iy), where i=sqrt(-1)" and "phi and Psi are non-zero ...

    Text Solution

    |

  12. If a ray of light incident along the line 3x+(5-4sqrt2)y=15 gets refle...

    Text Solution

    |

  13. At the point of intersection of the rectangular hyperbola xy = c^(2) a...

    Text Solution

    |

  14. If p ,q ,r ,s ae rational numbers and the roots of f(x)=0 are eccentri...

    Text Solution

    |

  15. If from the point (alpha,alpha^2) two tangents drawn to any one branch...

    Text Solution

    |

  16. Consider a hyperbola xy = 4 and a line y = 2x = 4. O is the centre of ...

    Text Solution

    |

  17. If theta is eliminated from the equations a sec theta-x tan theta=y" a...

    Text Solution

    |

  18. If A hyperbola be rectangular and its equation be xy=c^(2), prove tha...

    Text Solution

    |

  19. The normal at P(ct,(c )/(t)) to the hyperbola xy=c^2 meets it again a...

    Text Solution

    |

  20. Chords of the hyperbola x^2/a^2-y^2/b^2=1 are tangents to the circle d...

    Text Solution

    |