Home
Class 12
MATHS
If the normal at the point P(x1y1),i=1.2...

If the normal at the point `P(x_1y_1),i=1.2,3,4` on the hyperbola `xy=c^2` are concurrent at the point Q(h, k), then `((x_1+x_2+x_3+x_4)(y_1+y_2+y_3+y_4))/(x_1x_2x_3x_4)` is:

A

`(hk)/(c^2)`

B

`(hk)/(c^4)`

C

`-(hk)/(c^2)`

D

`-(hk)/(c^4)`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to find the value of \(\frac{(x_1 + x_2 + x_3 + x_4)(y_1 + y_2 + y_3 + y_4)}{x_1 x_2 x_3 x_4}\) given that the normals at points \(P(x_1, y_1), P(x_2, y_2), P(x_3, y_3), P(x_4, y_4)\) on the hyperbola \(xy = c^2\) are concurrent at point \(Q(h, k)\). ### Step 1: Identify the points on the hyperbola The hyperbola is given by the equation \(xy = c^2\). We can express the points \(P\) on the hyperbola in terms of a parameter \(t\): \[ P(t) = (ct, \frac{c^2}{t}) \] Thus, we can denote the points as: - \(P_1 = (ct_1, \frac{c^2}{t_1})\) - \(P_2 = (ct_2, \frac{c^2}{t_2})\) - \(P_3 = (ct_3, \frac{c^2}{t_3})\) - \(P_4 = (ct_4, \frac{c^2}{t_4})\) ### Step 2: Find the equation of the normal at point \(P(t)\) The slope of the tangent to the hyperbola at point \(P(t)\) is given by: \[ \text{slope} = -\frac{y}{x} = -\frac{c^2/t}{ct} = -\frac{c}{t} \] Thus, the slope of the normal is: \[ \text{slope of normal} = \frac{t}{c} \] The equation of the normal at point \(P(t)\) can be written as: \[ y - \frac{c^2}{t} = \frac{t}{c}(x - ct) \] Rearranging gives: \[ y = \frac{t}{c}x - \frac{t^2}{c} + \frac{c^2}{t} \] This can be rewritten as: \[ ty - tx + c^2 - t^2 = 0 \] ### Step 3: Substitute the point \(Q(h, k)\) Since the normals are concurrent at point \(Q(h, k)\), substituting \(x = h\) and \(y = k\) into the normal equation gives: \[ th - tk + c^2 - t^2 = 0 \] This leads to the equation: \[ th - tk + c^2 = t^2 \] Rearranging gives: \[ t^2 - th + tk - c^2 = 0 \] ### Step 4: Analyze the quadratic equation The equation \(t^2 - th + tk - c^2 = 0\) is a quadratic in \(t\) with roots \(t_1, t_2, t_3, t_4\). By Vieta's formulas, we know: - The sum of the roots \(t_1 + t_2 + t_3 + t_4 = h\) - The product of the roots \(t_1 t_2 t_3 t_4 = -c^2\) ### Step 5: Calculate \(x_1 + x_2 + x_3 + x_4\) and \(y_1 + y_2 + y_3 + y_4\) Using the expressions for \(x\) and \(y\): \[ x_1 + x_2 + x_3 + x_4 = c(t_1 + t_2 + t_3 + t_4) = ch \] \[ y_1 + y_2 + y_3 + y_4 = \frac{c^2}{t_1} + \frac{c^2}{t_2} + \frac{c^2}{t_3} + \frac{c^2}{t_4} = c^2\left(\frac{1}{t_1} + \frac{1}{t_2} + \frac{1}{t_3} + \frac{1}{t_4}\right) \] Using the relationship from Vieta's formulas, we have: \[ \frac{1}{t_1} + \frac{1}{t_2} + \frac{1}{t_3} + \frac{1}{t_4} = \frac{t_2 t_3 t_4 + t_1 t_3 t_4 + t_1 t_2 t_4 + t_1 t_2 t_3}{t_1 t_2 t_3 t_4} = \frac{k}{-c^2} \] Thus: \[ y_1 + y_2 + y_3 + y_4 = c^2 \cdot \frac{k}{-c^2} = -k \] ### Step 6: Calculate the final expression Now substituting these into the expression we want to evaluate: \[ \frac{(x_1 + x_2 + x_3 + x_4)(y_1 + y_2 + y_3 + y_4)}{x_1 x_2 x_3 x_4} = \frac{(ch)(-k)}{-c^4} = \frac{hk}{c^4} \] ### Final Result Thus, the value is: \[ \frac{hk}{c^4} \]
Promotional Banner

Topper's Solved these Questions

  • CONIC SECTIONS

    VMC MODULES ENGLISH|Exercise Numerical Value Type for JEE Main|15 Videos
  • CONIC SECTIONS

    VMC MODULES ENGLISH|Exercise JEE MAIN ARCHIVE|15 Videos
  • CONIC SECTIONS

    VMC MODULES ENGLISH|Exercise LEVEL - 1|178 Videos
  • COMPLEX NUMBERS

    VMC MODULES ENGLISH|Exercise JEE ARCHIVE|76 Videos
  • DIFFERENTIAL CALCULUS

    VMC MODULES ENGLISH|Exercise JEE Advanced (Archive)|75 Videos

Similar Questions

Explore conceptually related problems

If the normals at four points P (x_i y_i), i = 1, 2, 3, 4 on the rectangular hyperbola xy = c^2 , meet at the point Q(h, k), then prove that x_1 + x_2 + x_3 + x_4 =h

If the normals at (x_(i),y_(i)) i=1,2,3,4 to the rectangular hyperbola xy=2 meet at the point (3,4) then

If the normal at four points P_(i)(x_(i), (y_(i)) l, I = 1, 2, 3, 4 on the rectangular hyperbola xy = c^(2) meet at the point Q(h, k), prove that x_(1) + x_(2) + x_(3) + x_(4) = h, y_(1) + y_(2) + y_(3) + y_(4) = k x_(1)x_(2)x_(3)x_(4) =y_(1)y_(2)y_(3)y_(4) =-c^(4)

The distance of the origin from the normal drawn at the point (1,-1) on the hyperbola 4x^2-3y^2=1 is

If the circle x^2+y^2=a^2 intersects the hyperbola x y=c^2 at four points P(x_1, y_1),Q(x_2, y_2),R(x_3, y_3), and S(x_4, y_4), then x_1+x_2+x_3+x_4=0 y_1+y_2+y_3+y_4=0 x_1x_2x_3x_4=C^4 y_1y_2y_3y_4=C^4

If the circle x^2+y^2=a^2 intersects the hyperbola x y=c^2 at four points P(x_1, y_1),Q(x_2, y_2),R(x_3, y_3), and S(x_4, y_4), then x_1+x_2+x_3+x_4=0 y_1+y_2+y_3+y_4=0 x_1x_2x_3x_4=C^4 y_1y_2y_3y_4=C^4

Normals at (x_(1),y_(1)),(x_(2),y_(2))and(x_(3),y_(3)) to the parabola y^(2)=4x are concurrent at point P. If y_(1)y_(2)+y_(2)y_(3)+y_(3)y_(1)=x_(1)x_(2)x_(3) , then locus of point P is part of parabola, length of whose latus rectum is __________.

If the normals at the four points (x_1,y_1),(x_2,y_2),(x_3,y_3) and (x_4,y_4) on the ellipse x^(2)/a^(2)+y^(2)/b^(2)=1 are concurrent, then the value of (sum_(i=1)^4x_i)(sum_(i=1)^(4)1/x_i)

If the normals to the ellipse x^2/a^2+y^2/b^2= 1 at the points (x_1, y_1), (x_2, y_2) and (x_3, y_3) are concurrent, prove that |(x_1,y_1,x_1y_1),(x_2,y_2,x_2y_2),(x_3,y_3,x_3y_3)|=0 .

A circle cuts the rectangular hyperbola xy=1 in the points (x_(r),y_(r)), r=1,2,3,4 . Prove that x_(1)x_(2)x_(3)x_(4)=y_(1)y_(2)y_(3)y_(4)=1

VMC MODULES ENGLISH-CONIC SECTIONS-LEVEL - 2
  1. If the normal at 'theta' on the hyperbola (x^(2))/(a^(2))-(y^(2))/(b^(...

    Text Solution

    |

  2. From the points on the circle x^(2)+y^(2)=a^(2), tangents are drawn to...

    Text Solution

    |

  3. If the normal at the point P(x1y1),i=1.2,3,4 on the hyperbola xy=c^2 a...

    Text Solution

    |

  4. The normal at any point P(x1,y1) of curve is a line perpendicular to t...

    Text Solution

    |

  5. The normal at any point P(x1,y1) of curve is a line perpendicular to t...

    Text Solution

    |

  6. If the latus rectum of a hyperbola forms an equilateral triangle with ...

    Text Solution

    |

  7. If the tangent at point P(h, k) on the hyperbola (x^(2))/(a^(2))-(y^(2...

    Text Solution

    |

  8. If P(a sec alpha,b tan alpha)" and "Q(a sec beta, b tan beta) are two ...

    Text Solution

    |

  9. If x+iy=sqrt(phi+iy), where i=sqrt(-1)" and "phi and Psi are non-zero ...

    Text Solution

    |

  10. If a ray of light incident along the line 3x+(5-4sqrt2)y=15 gets refle...

    Text Solution

    |

  11. At the point of intersection of the rectangular hyperbola xy = c^(2) a...

    Text Solution

    |

  12. If p ,q ,r ,s ae rational numbers and the roots of f(x)=0 are eccentri...

    Text Solution

    |

  13. If from the point (alpha,alpha^2) two tangents drawn to any one branch...

    Text Solution

    |

  14. Consider a hyperbola xy = 4 and a line y = 2x = 4. O is the centre of ...

    Text Solution

    |

  15. If theta is eliminated from the equations a sec theta-x tan theta=y" a...

    Text Solution

    |

  16. If A hyperbola be rectangular and its equation be xy=c^(2), prove tha...

    Text Solution

    |

  17. The normal at P(ct,(c )/(t)) to the hyperbola xy=c^2 meets it again a...

    Text Solution

    |

  18. Chords of the hyperbola x^2/a^2-y^2/b^2=1 are tangents to the circle d...

    Text Solution

    |

  19. Two rods of lengths aa n db slide along the x- and y-axis , respective...

    Text Solution

    |

  20. Show that the acute angle between the asymptotes of the hyperbola (x^2...

    Text Solution

    |