Home
Class 12
MATHS
If beta is one of the angles between the...

If `beta` is one of the angles between the normals to the ellipse, `x^2+3y^2=9` at the points `(3 cos theta, sqrt(3) sin theta)" and "(-3 sin theta, sqrt(3) cos theta), theta in (0,(pi)/(2))`, then `(2 cot beta)/(sin 2 theta)` is equal to:

A

`(1)/(sqrt(3))`

B

`(2)/(sqrt(3))`

C

`sqrt(2)`

D

`(sqrt(3))/(4)`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to find the value of \( \frac{2 \cot \beta}{\sin 2\theta} \) where \( \beta \) is the angle between the normals to the ellipse \( x^2 + 3y^2 = 9 \) at the given points. Let's go through the solution step by step. ### Step 1: Write the equation of the ellipse The equation of the ellipse is given as: \[ x^2 + 3y^2 = 9 \] ### Step 2: Differentiate the equation of the ellipse We differentiate both sides of the equation with respect to \( x \): \[ \frac{d}{dx}(x^2) + \frac{d}{dx}(3y^2) = \frac{d}{dx}(9) \] This gives: \[ 2x + 3 \cdot 2y \frac{dy}{dx} = 0 \] Simplifying, we find: \[ 2x + 6y \frac{dy}{dx} = 0 \] Thus, \[ \frac{dy}{dx} = -\frac{2x}{6y} = -\frac{x}{3y} \] ### Step 3: Find the slope of the normal The slope of the normal is the negative reciprocal of the slope of the tangent: \[ \text{slope of normal} = -\frac{1}{\frac{dy}{dx}} = \frac{3y}{x} \] ### Step 4: Calculate the slopes at the given points 1. For the point \( (3 \cos \theta, \sqrt{3} \sin \theta) \): \[ m_1 = \frac{3(\sqrt{3} \sin \theta)}{3 \cos \theta} = \sqrt{3} \tan \theta \] 2. For the point \( (-3 \sin \theta, \sqrt{3} \cos \theta) \): \[ m_2 = \frac{3(\sqrt{3} \cos \theta)}{-3 \sin \theta} = -\sqrt{3} \cot \theta \] ### Step 5: Find \( \tan \beta \) Using the formula for the tangent of the angle between two lines: \[ \tan \beta = \frac{m_1 - m_2}{1 + m_1 m_2} \] Substituting \( m_1 \) and \( m_2 \): \[ \tan \beta = \frac{\sqrt{3} \tan \theta + \sqrt{3} \cot \theta}{1 - (\sqrt{3} \tan \theta)(-\sqrt{3} \cot \theta)} \] This simplifies to: \[ \tan \beta = \frac{\sqrt{3} (\tan \theta + \cot \theta)}{1 + 3} \] \[ \tan \beta = \frac{\sqrt{3} (\tan \theta + \cot \theta)}{4} \] ### Step 6: Express \( \cot \beta \) Since \( \cot \beta = \frac{1}{\tan \beta} \): \[ \cot \beta = \frac{4}{\sqrt{3} (\tan \theta + \cot \theta)} \] ### Step 7: Find \( \frac{2 \cot \beta}{\sin 2\theta} \) We know that \( \sin 2\theta = 2 \sin \theta \cos \theta \). Therefore: \[ \frac{2 \cot \beta}{\sin 2\theta} = \frac{2 \cdot \frac{4}{\sqrt{3} (\tan \theta + \cot \theta)}}{2 \sin \theta \cos \theta} \] This simplifies to: \[ \frac{8}{\sqrt{3} (\tan \theta + \cot \theta) \cdot 2 \sin \theta \cos \theta} \] Using the identity \( \tan \theta + \cot \theta = \frac{\sin^2 \theta + \cos^2 \theta}{\sin \theta \cos \theta} = \frac{1}{\sin \theta \cos \theta} \): \[ \frac{2 \cot \beta}{\sin 2\theta} = \frac{8}{\sqrt{3} \cdot 2} = \frac{4}{\sqrt{3}} \] ### Final Result Thus, the value of \( \frac{2 \cot \beta}{\sin 2\theta} \) is: \[ \frac{8}{\sqrt{3}} \]
Promotional Banner

Topper's Solved these Questions

  • CONIC SECTIONS

    VMC MODULES ENGLISH|Exercise JEE ADVANCED ARCHIVE|76 Videos
  • CONIC SECTIONS

    VMC MODULES ENGLISH|Exercise Numerical Value Type for JEE Main|15 Videos
  • COMPLEX NUMBERS

    VMC MODULES ENGLISH|Exercise JEE ARCHIVE|76 Videos
  • DIFFERENTIAL CALCULUS

    VMC MODULES ENGLISH|Exercise JEE Advanced (Archive)|75 Videos

Similar Questions

Explore conceptually related problems

cos theta+sqrt(3)sin theta=2

Solve sqrt(3) cos theta-3 sin theta =4 sin 2 theta cos 3 theta .

If (pi)/(2) lt theta lt (3pi)/(2) then sqrt(tan^(2)theta-sin^(2)theta) is equal to :

If (pi)/(2) lt theta lt (3pi)/(2) then sqrt(tan^(2)theta-sin^(2)theta) is equal to :

If 2 cos theta = sqrt3. prove that : 3 sin theta - 4 sin ^(3) theta =1

Solve : sqrt3 sin theta - cos theta = sqrt2.

Solve : 3-2 cos theta -4 sin theta - cos 2theta+sin 2theta=0 .

One of the general solutions of sqrt(3) cos theta -3 sin theta =4 sin 2 theta cos 3 theta is

If cos theta + sin theta =sqrt(2) cos theta prove that cos theta -sin theta =sqrt(2) sin theta

Solve (3 sin theta-sin 3 theta)/(sin theta)+(cos 3 theta)/(cos theta)=1 .