Home
Class 12
MATHS
Redefine the function f(x)=|x-2|+|2+x|,-...

Redefine the function `f(x)=|x-2|+|2+x|,-3lt=xlt=3`

Text Solution

AI Generated Solution

The correct Answer is:
To redefine the function \( f(x) = |x-2| + |2+x| \) for the interval \(-3 < x < 3\), we need to analyze the points where the expressions inside the absolute values change their signs. The critical points are \( x = 2 \) and \( x = -2 \). ### Step 1: Identify intervals based on critical points The critical points divide the interval \(-3 < x < 3\) into three segments: 1. \( -3 < x < -2 \) 2. \( -2 < x < 2 \) 3. \( 2 < x < 3 \) ### Step 2: Evaluate the function in each interval #### Interval 1: \( -3 < x < -2 \) In this interval: - \( x - 2 < 0 \) (thus, \( |x - 2| = -(x - 2) = -x + 2 \)) - \( 2 + x < 0 \) (thus, \( |2 + x| = -(2 + x) = -2 - x \)) So, \[ f(x) = |x - 2| + |2 + x| = (-x + 2) + (-2 - x) = -2x \] #### Interval 2: \( -2 < x < 2 \) In this interval: - \( x - 2 < 0 \) (thus, \( |x - 2| = -x + 2 \)) - \( 2 + x > 0 \) (thus, \( |2 + x| = 2 + x \)) So, \[ f(x) = |x - 2| + |2 + x| = (-x + 2) + (2 + x) = 4 \] #### Interval 3: \( 2 < x < 3 \) In this interval: - \( x - 2 > 0 \) (thus, \( |x - 2| = x - 2 \)) - \( 2 + x > 0 \) (thus, \( |2 + x| = 2 + x \)) So, \[ f(x) = |x - 2| + |2 + x| = (x - 2) + (2 + x) = 2x \] ### Step 3: Combine results Now we can redefine the function \( f(x) \) based on the intervals we analyzed: \[ f(x) = \begin{cases} -2x & \text{for } -3 < x < -2 \\ 4 & \text{for } -2 < x < 2 \\ 2x & \text{for } 2 < x < 3 \end{cases} \] ### Final Result Thus, the redefined function is: \[ f(x) = \begin{cases} -2x & \text{for } -3 < x < -2 \\ 4 & \text{for } -2 < x < 2 \\ 2x & \text{for } 2 < x < 3 \end{cases} \]
Promotional Banner

Topper's Solved these Questions

  • FUNCTIONS

    VMC MODULES ENGLISH|Exercise Level -1|71 Videos
  • FUNCTIONS

    VMC MODULES ENGLISH|Exercise Level -2|47 Videos
  • DIFFERENTIAL EQUATIONS

    VMC MODULES ENGLISH|Exercise JEE ADVANCE (ARCHIVE )|32 Videos
  • INTEGRAL CALCULUS - 2

    VMC MODULES ENGLISH|Exercise JEE Advanced (Archive)|103 Videos

Similar Questions

Explore conceptually related problems

Redefine the function f(x)= |1+x| +|1-x|, -2 le x le 2 .

The range of the function f(x)=|x-1|+|x-2|,-1lt=xlt=3, is [1,3] (b) [1,5] (c) [3,5] (d) none of these

Verify Rolles theorem for the function f(x)=x(x-3)^2,\ 0lt=xlt=3 .

Discuss the applicability of Rolles theorem on the function f(x)={(x^2+1 ,, if \ 0lt=xlt=1),(3-x ,,if 1ltxlt=2):}

Examine the continuity of the function f(x)={3x-2,\ \ \ xlt=0x+1,\ \ \ x >0 at x=0 . Also sketch the graph of this function.

Examine the continuity of the function f(x)=3x-2,xlt=0 , f(x)=x+1,x>0" at x=0 Also sketch the graph of this function.

Consider the function f(x)={2x+3,xlt=1-x^2+6,x >1

The points of discontinuity of the function f(x)={2sqrt(x)\ \ \ ,\ \ \ 0lt=xlt=1 ,\ \ \4-2x\ \ \ ,\ \ \ 1< x

Find the maxima and minima of the function y=x(x-1)^2,0lt=xlt=2.

Which of the following statements is true for the function f(x)={sqrt(x),xgeq1x^3,0lt=xlt=1(x^3)/3-4x ,x 0