Home
Class 12
MATHS
Let f(x)=sqrt(x)and g(x) = xbe two func...

Let `f(x)=sqrt(x)`and `g(x) = x`be two functions defined over the set of nonnegative real numbers. Find `(f + g) (x)`, `(f g) (x)`, `(f-g) (x)`and `(f/g)(x)`.

A

`(f+g)(x)`

B

`(f-g)(x)`

C

`(fg)(x)`

D

`(f/g)(x)`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to find the following expressions based on the functions \( f(x) = \sqrt{x} \) and \( g(x) = x \): 1. \( (f + g)(x) \) 2. \( (f \cdot g)(x) \) 3. \( (f - g)(x) \) 4. \( \left( \frac{f}{g} \right)(x) \) Let's go through each step: ### Step 1: Calculate \( (f + g)(x) \) \[ (f + g)(x) = f(x) + g(x) \] \[ = \sqrt{x} + x \] ### Step 2: Calculate \( (f \cdot g)(x) \) \[ (f \cdot g)(x) = f(x) \cdot g(x) \] \[ = \sqrt{x} \cdot x \] \[ = x^{1/2} \cdot x^{1} = x^{(1/2 + 1)} = x^{3/2} \] ### Step 3: Calculate \( (f - g)(x) \) \[ (f - g)(x) = f(x) - g(x) \] \[ = \sqrt{x} - x \] ### Step 4: Calculate \( \left( \frac{f}{g} \right)(x) \) \[ \left( \frac{f}{g} \right)(x) = \frac{f(x)}{g(x)} \] \[ = \frac{\sqrt{x}}{x} \] \[ = \frac{1}{\sqrt{x}} \quad \text{(for } x \neq 0\text{)} \] ### Summary of Results 1. \( (f + g)(x) = \sqrt{x} + x \) 2. \( (f \cdot g)(x) = x^{3/2} \) 3. \( (f - g)(x) = \sqrt{x} - x \) 4. \( \left( \frac{f}{g} \right)(x) = \frac{1}{\sqrt{x}} \) (for \( x \neq 0 \))
Promotional Banner

Topper's Solved these Questions

  • FUNCTIONS

    VMC MODULES ENGLISH|Exercise Level -1|71 Videos
  • FUNCTIONS

    VMC MODULES ENGLISH|Exercise Level -2|47 Videos
  • DIFFERENTIAL EQUATIONS

    VMC MODULES ENGLISH|Exercise JEE ADVANCE (ARCHIVE )|32 Videos
  • INTEGRAL CALCULUS - 2

    VMC MODULES ENGLISH|Exercise JEE Advanced (Archive)|103 Videos

Similar Questions

Explore conceptually related problems

Let f(x)=sqrt(x) and g(x) = x be two functions defined over the set of nonnegative real numbers. Find (f + g) (x) , (f - g) (x) , (fg) (x) and (f/g)(x) .

Let f(x)=sqrt(x) and g(x) = x be two functions defined over the set of nonnegative real numbers. Find (f + g) (x) , (f g) (x) , (fg) (x) and (f/g)(x) .

let f(x) = sqrtx and g(x) =x be function defined over the set of non negative real numbers . find (f+g)(x) , (f-g)(x) , (fg)(x) and (f/g)(x) .

Let f(x) = 3x + 8 and g(x) = x^(2) be two real functions. Find (f+g) (x)

Let f(x) = x^(3) + 5 and g(x) = 5x + 3 be two real functions. Find (f+g)(x)

Let f(x) = x^(2) + 6x + 2 and g(x) = 9x +5 be two functions. Find (f+g)(x).

Let f(x)=x^2 and g(x) = 2x + 1 be two real functions. find (f +g)(x) , (f-g)(x) , (fg)(x) , (f/g)(x) .

Let f(x) = 3x^(2) + 6x + 5 and g(x) = x + 1 be two real functions. Find (f+g)(x), (f-g)(x), (fg)(x) and ((f)/(g))(x)

Let f(x)=x^2 and g(x)" "=" "2x" "+" "1 be two real functions. Find (f" "+" "g) (x) , (f" "" "g)" "(x) , (fg)" "(x) , (f/g)(x) .

Let f(x) = x^(2) + 2x +5 and g(x) = x^(3) - 1 be two real functions. Find (f+g)(x), (f-g)(x), (fg)(x) and ((f)/(g))(x) .