Home
Class 12
MATHS
let f(x)=sqrt(1+x^2) then...

let `f(x)=sqrt(1+x^2)` then

A

`f(xy)=f(x). f(y)`

B

`f(xy) ge f(x) . f(y)`

C

`f(xy) le f(x) . f(y)`

D

None of these

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to find the relationship between \( f(xy) \) and \( f(x) \cdot f(y) \), where \( f(x) = \sqrt{1 + x^2} \). ### Step 1: Calculate \( f(xy) \) We start by substituting \( xy \) into the function \( f \): \[ f(xy) = \sqrt{1 + (xy)^2} = \sqrt{1 + x^2y^2} \] ### Step 2: Calculate \( f(x) \cdot f(y) \) Next, we calculate the product \( f(x) \cdot f(y) \): \[ f(x) = \sqrt{1 + x^2} \] \[ f(y) = \sqrt{1 + y^2} \] Now, we multiply these two expressions: \[ f(x) \cdot f(y) = \sqrt{1 + x^2} \cdot \sqrt{1 + y^2} = \sqrt{(1 + x^2)(1 + y^2)} \] Expanding this product gives us: \[ f(x) \cdot f(y) = \sqrt{1 + x^2 + y^2 + x^2y^2} \] ### Step 3: Compare \( f(xy) \) and \( f(x) \cdot f(y) \) Now we compare \( f(xy) \) and \( f(x) \cdot f(y) \): - We have \( f(xy) = \sqrt{1 + x^2y^2} \) - And \( f(x) \cdot f(y) = \sqrt{1 + x^2 + y^2 + x^2y^2} \) ### Step 4: Establish the inequality To compare these two expressions, we note that: \[ 1 + x^2 + y^2 + x^2y^2 \geq 1 + x^2y^2 \] This is true because \( x^2 \) and \( y^2 \) are both non-negative (since they are squares). Therefore, we can conclude that: \[ f(x) \cdot f(y) \geq f(xy) \] ### Conclusion Thus, we can write the final relation as: \[ f(xy) \leq f(x) \cdot f(y) \] ### Final Answer The correct relationship is: \[ f(xy) \leq f(x) \cdot f(y) \]
Promotional Banner

Topper's Solved these Questions

  • FUNCTIONS

    VMC MODULES ENGLISH|Exercise Level -1|71 Videos
  • FUNCTIONS

    VMC MODULES ENGLISH|Exercise Level -2|47 Videos
  • DIFFERENTIAL EQUATIONS

    VMC MODULES ENGLISH|Exercise JEE ADVANCE (ARCHIVE )|32 Videos
  • INTEGRAL CALCULUS - 2

    VMC MODULES ENGLISH|Exercise JEE Advanced (Archive)|103 Videos

Similar Questions

Explore conceptually related problems

Let f(x) = tan x, x in (-pi/2,pi/2)and g(x) = sqrt(1-x^2) then g(f(x)) is

Let f (x)= (x)/(sqrt(1+x^(2))) then ubrace(fo fo fo ......of)(x) is :

If f(x)=sqrt(x^(2)-2x+1), then f' (x) ?

f(x)=sqrt(1-sqrt(1-x^2) then at x=0 ,value of f(x) is

Let f(x)=sqrt(x^(2)-4x) and g(x) = 3x . The sum of all values for which f(x) = g(x) is

Let f (x) =x + sqrt(x^(2) +2x) and g (x) = sqrt(x^(2) +2x)-x, then:

Let f(x) be a continuous function defined for 0lexle3 , if f(x) takes irrational values for all x and f(1)=sqrt(2) , then evaluate f(1.5).f(2.5) .

If f(x)=sqrt(4-x^2)+sqrt(x^2-1) , then the maximum value of (f(x))^2 is ____________

If f(x)=sqrt(4-x^2)+sqrt(x^2-1) , then the maximum value of (f(x))^2 is ____________

Let f:DtoR , where D is the domain of f . Find the inverse of f if it exists: f(x)=ln(x+sqrt(1+x^(2)))