Home
Class 12
MATHS
Solve the equation for x : log4+(1+1/(2x...

Solve the equation for `x : log4+(1+1/(2x))log3=log(3^(1/x)+27)`

A

0

B

2

C

3

D

None of these

Text Solution

AI Generated Solution

The correct Answer is:
To solve the equation \( \log 4 + \left(1 + \frac{1}{2x}\right) \log 3 = \log \left(3^{\frac{1}{x}} + 27\right) \), we will follow these steps: ### Step 1: Rewrite the Equation We start with the given equation: \[ \log 4 + \left(1 + \frac{1}{2x}\right) \log 3 = \log \left(3^{\frac{1}{x}} + 27\right) \] ### Step 2: Apply Logarithmic Properties Using the properties of logarithms, we can rewrite the left-hand side: \[ \log 4 + \log 3^{1 + \frac{1}{2x}} = \log \left(4 \cdot 3^{1 + \frac{1}{2x}}\right) \] This simplifies our equation to: \[ \log \left(4 \cdot 3^{1 + \frac{1}{2x}}\right) = \log \left(3^{\frac{1}{x}} + 27\right) \] ### Step 3: Remove the Logarithm Since the logarithms are equal, we can set the arguments equal to each other: \[ 4 \cdot 3^{1 + \frac{1}{2x}} = 3^{\frac{1}{x}} + 27 \] ### Step 4: Substitute for Simplicity Let \( t = 3^{\frac{1}{2x}} \). Then \( 3^{\frac{1}{x}} = t^2 \). Substituting this into the equation gives: \[ 4 \cdot 3 \cdot t = t^2 + 27 \] which simplifies to: \[ 12t = t^2 + 27 \] ### Step 5: Rearranging the Equation Rearranging the equation leads to: \[ t^2 - 12t + 27 = 0 \] ### Step 6: Factor the Quadratic We can factor the quadratic: \[ (t - 9)(t - 3) = 0 \] Thus, the solutions for \( t \) are: \[ t = 9 \quad \text{or} \quad t = 3 \] ### Step 7: Back Substitute for \( x \) Recall that \( t = 3^{\frac{1}{2x}} \): 1. For \( t = 9 \): \[ 3^{\frac{1}{2x}} = 9 \implies 3^{\frac{1}{2x}} = 3^2 \implies \frac{1}{2x} = 2 \implies 2x = \frac{1}{2} \implies x = \frac{1}{4} \] 2. For \( t = 3 \): \[ 3^{\frac{1}{2x}} = 3 \implies \frac{1}{2x} = 1 \implies 2x = 1 \implies x = \frac{1}{2} \] ### Step 8: Check Validity of Solutions We need to check if these values of \( x \) are valid. The logarithm \( \log \left(3^{\frac{1}{x}} + 27\right) \) requires \( 3^{\frac{1}{x}} + 27 > 0 \), which is satisfied for both \( x = \frac{1}{4} \) and \( x = \frac{1}{2} \). ### Conclusion Thus, the solutions to the equation are: \[ x = \frac{1}{4} \quad \text{and} \quad x = \frac{1}{2} \]
Promotional Banner

Topper's Solved these Questions

  • FUNCTIONS

    VMC MODULES ENGLISH|Exercise Level -2|47 Videos
  • FUNCTIONS

    VMC MODULES ENGLISH|Exercise Level -2 (Numerical Value Type for JEE Main)|14 Videos
  • FUNCTIONS

    VMC MODULES ENGLISH|Exercise JEE Main & Advanced|8 Videos
  • DIFFERENTIAL EQUATIONS

    VMC MODULES ENGLISH|Exercise JEE ADVANCE (ARCHIVE )|32 Videos
  • INTEGRAL CALCULUS - 2

    VMC MODULES ENGLISH|Exercise JEE Advanced (Archive)|103 Videos

Similar Questions

Explore conceptually related problems

Solve the equation: (log(x+1))/(logx)=2

Solve the equation: log_2x+log_4(x+2)=2

Solve the equation log(3x^(2)+x-2)=3log(3x-2) .

Solve the equation: log_(2x+3)x^(2) lt log_(2x)(2x+3)

Solve the equation log_(1//3)[2(1/2)^(x)-1]=log_(1//3)[(1/4)^(x)-4]

Solve the following equation for x: 9^(log_3(log_2x))=log_2 x- (log_2 x)^2+1

Solve the equation log_(3)(5+4log_(3)(x-1))=2

Solve the following equations for x and y: log_10x+log_10(x)^(1/2)+log_10(x)^(1/4)+….=y (1+3+5+…+(2y-1))/(4+7+10+..+(3y+1))=20/(7log_10x)

Solve the equation 2x^(log_(4)^(3))+3^(log_(4)^(x))=27

Solve the equations for x and y:(3x)^(log3)=(4y)^(log 4), 4 ^(log x) = 3 ^(log y) .

VMC MODULES ENGLISH-FUNCTIONS-Level -1
  1. Which of the following when simplified reduces to unity? I. log(1.5)...

    Text Solution

    |

  2. IF (log)6{(log)2[sqrt(4x+2)]+2sqrt(x)}=0, then x= .

    Text Solution

    |

  3. Solve the equation for x : log4+(1+1/(2x))log3=log(3^(1/x)+27)

    Text Solution

    |

  4. define plot y=|x-2|+3|x-3|

    Text Solution

    |

  5. The domain of the function f(x)=[log(10)((5x-x^(2))/(4))]^(1//2) is

    Text Solution

    |

  6. The domain of the function f(x)=sqrt(-log(0.3) (x-1))/(sqrt(-x^(2)+2x+...

    Text Solution

    |

  7. The range of f(x)=sqrt(|x|-x) is:

    Text Solution

    |

  8. The range of f(x)=(sinpi[x^2-1])/(x^4+1) is f(x) in :

    Text Solution

    |

  9. The domain of the function f(x)=(tan 2x)/(6 cos x+2 sin 2x)" is "

    Text Solution

    |

  10. If f(x)=log((1+x)/(1-x))a n dg(x)=((3x+x^3)/(1+3x^2)) , then f(g(x)) i...

    Text Solution

    |

  11. If f(x)=(x-1)/(x+1) then f(2x) is equal to

    Text Solution

    |

  12. Let f(x)=x amd g(x)=|x| for all x in R. Then the function phi(x)"satis...

    Text Solution

    |

  13. If f(x) = 1/2 (3^x + 3^(-x)), g(x) = 1/2 (3^x - 3^(-x)), then f(x) \ g...

    Text Solution

    |

  14. The domain of f(x)=(1)/(|sin x|+sin x|)" is:

    Text Solution

    |

  15. If f(x)="sin ln" (sqrt(4-x^(2)))/(1-x), then

    Text Solution

    |

  16. Statement 1 : The domain of the function f(x)=sqrt(x-[x])" is "R^(+) ...

    Text Solution

    |

  17. Statement 1 : f (x) = |x - 3| + |x - 4| + |x - 7| where 4 lt x lt 7 is...

    Text Solution

    |

  18. Statement 1 : The domain of the function f(x)=sqrt(x-[x])" is "R^(+) ...

    Text Solution

    |

  19. If f(x)=sin[pi^2]x+sin[-pi^2]x, where [x] denotes the greatest integer...

    Text Solution

    |

  20. The correct graph of y = (|log(2)2x|)/(log(2)2x) is

    Text Solution

    |