Home
Class 12
MATHS
The range of f(x)=sqrt(|x|-x) is:...

The range of `f(x)=sqrt(|x|-x)` is:

A

`(0,oo)`

B

`[0,oo)`

C

`(-oo,0)`

D

`(-oo,0]`

Text Solution

AI Generated Solution

The correct Answer is:
To find the range of the function \( f(x) = \sqrt{|x| - x} \), we will follow these steps: ### Step 1: Analyze the expression inside the square root The expression inside the square root is \( |x| - x \). We need to determine how this expression behaves for different values of \( x \). ### Step 2: Break down the absolute value The absolute value function \( |x| \) can be defined piecewise: - If \( x \geq 0 \), then \( |x| = x \). - If \( x < 0 \), then \( |x| = -x \). ### Step 3: Evaluate \( |x| - x \) for different cases 1. **Case 1: \( x \geq 0 \)** \[ |x| - x = x - x = 0 \] 2. **Case 2: \( x < 0 \)** \[ |x| - x = -x - x = -2x \] ### Step 4: Determine the values of \( f(x) \) - For \( x \geq 0 \): \[ f(x) = \sqrt{0} = 0 \] - For \( x < 0 \): \[ f(x) = \sqrt{-2x} \] Since \( x \) is negative, \( -2x \) is positive, and as \( x \) approaches \( 0 \) from the left, \( -2x \) approaches \( 0 \). As \( x \) decreases (becomes more negative), \( -2x \) increases without bound. ### Step 5: Find the minimum and maximum values of \( f(x) \) - The minimum value of \( f(x) \) occurs at \( x = 0 \), where \( f(0) = 0 \). - The maximum value of \( f(x) \) occurs as \( x \) approaches \( -\infty \), where \( f(x) \) approaches \( \infty \). ### Step 6: Conclude the range of \( f(x) \) Thus, the range of \( f(x) \) is: \[ [0, \infty) \] ### Final Answer The range of \( f(x) = \sqrt{|x| - x} \) is \( [0, \infty) \). ---
Promotional Banner

Topper's Solved these Questions

  • FUNCTIONS

    VMC MODULES ENGLISH|Exercise Level -2|47 Videos
  • FUNCTIONS

    VMC MODULES ENGLISH|Exercise Level -2 (Numerical Value Type for JEE Main)|14 Videos
  • FUNCTIONS

    VMC MODULES ENGLISH|Exercise JEE Main & Advanced|8 Videos
  • DIFFERENTIAL EQUATIONS

    VMC MODULES ENGLISH|Exercise JEE ADVANCE (ARCHIVE )|32 Videos
  • INTEGRAL CALCULUS - 2

    VMC MODULES ENGLISH|Exercise JEE Advanced (Archive)|103 Videos

Similar Questions

Explore conceptually related problems

Find the domain and the range of f(x)=sqrt(x^2-3x.)

Find the range of f(x)=sqrt(x-1)+sqrt(5-x)

Find the range of f(x) = sqrt(x-1)+sqrt(5-x)

What is the range of f(x)=x^(3)-sqrt(-x-6) ?

Write of the domain and range of f(x)=sqrt(x-[x])dot

Find the domain and range of f(x)=sqrt(x^2-4x+6)

Find the domain and range of f(x)=sqrt(x^2-4x+6)

Find the domain and range of f(x)=sqrt(x^2-3x+2)

Find the domain and range of f(x)=sqrt(3-2x-x^2)

Find the domain and range of f(x)=sqrt(3-2x-x^2)

VMC MODULES ENGLISH-FUNCTIONS-Level -1
  1. The domain of the function f(x)=[log(10)((5x-x^(2))/(4))]^(1//2) is

    Text Solution

    |

  2. The domain of the function f(x)=sqrt(-log(0.3) (x-1))/(sqrt(-x^(2)+2x+...

    Text Solution

    |

  3. The range of f(x)=sqrt(|x|-x) is:

    Text Solution

    |

  4. The range of f(x)=(sinpi[x^2-1])/(x^4+1) is f(x) in :

    Text Solution

    |

  5. The domain of the function f(x)=(tan 2x)/(6 cos x+2 sin 2x)" is "

    Text Solution

    |

  6. If f(x)=log((1+x)/(1-x))a n dg(x)=((3x+x^3)/(1+3x^2)) , then f(g(x)) i...

    Text Solution

    |

  7. If f(x)=(x-1)/(x+1) then f(2x) is equal to

    Text Solution

    |

  8. Let f(x)=x amd g(x)=|x| for all x in R. Then the function phi(x)"satis...

    Text Solution

    |

  9. If f(x) = 1/2 (3^x + 3^(-x)), g(x) = 1/2 (3^x - 3^(-x)), then f(x) \ g...

    Text Solution

    |

  10. The domain of f(x)=(1)/(|sin x|+sin x|)" is:

    Text Solution

    |

  11. If f(x)="sin ln" (sqrt(4-x^(2)))/(1-x), then

    Text Solution

    |

  12. Statement 1 : The domain of the function f(x)=sqrt(x-[x])" is "R^(+) ...

    Text Solution

    |

  13. Statement 1 : f (x) = |x - 3| + |x - 4| + |x - 7| where 4 lt x lt 7 is...

    Text Solution

    |

  14. Statement 1 : The domain of the function f(x)=sqrt(x-[x])" is "R^(+) ...

    Text Solution

    |

  15. If f(x)=sin[pi^2]x+sin[-pi^2]x, where [x] denotes the greatest integer...

    Text Solution

    |

  16. The correct graph of y = (|log(2)2x|)/(log(2)2x) is

    Text Solution

    |

  17. The graph of y=x is

    Text Solution

    |

  18. The graph y = f (x) is as shown: The graph of y = f (–|x|) is:

    Text Solution

    |

  19. The graph of f(x) is given below. Then, (a) Graph of -f(x)+2 is

    Text Solution

    |

  20. Draw the following curves : y=||x^(2)|-2x-3| |x|+|y|=1

    Text Solution

    |