Home
Class 12
MATHS
If f(x) = 1/2 (3^x + 3^(-x)), g(x) = 1/2...

If `f(x) = 1/2 (3^x + 3^(-x)), g(x) = 1/2 (3^x - 3^(-x))`, then `f(x) \ g(y)+f(y) \ g(x)=`

A

f (x+y)

B

g(x+y)

C

2f (x)

D

2g (x)

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to evaluate the expression \( f(x) \cdot g(y) + f(y) \cdot g(x) \) where: \[ f(x) = \frac{1}{2} (3^x + 3^{-x}) \] \[ g(x) = \frac{1}{2} (3^x - 3^{-x}) \] ### Step 1: Write down the expressions for \( f(x) \) and \( g(y) \) We have: \[ f(x) = \frac{1}{2} (3^x + 3^{-x}) \] \[ g(y) = \frac{1}{2} (3^y - 3^{-y}) \] ### Step 2: Calculate \( f(x) \cdot g(y) \) Now we calculate \( f(x) \cdot g(y) \): \[ f(x) \cdot g(y) = \left(\frac{1}{2} (3^x + 3^{-x})\right) \cdot \left(\frac{1}{2} (3^y - 3^{-y})\right) \] \[ = \frac{1}{4} (3^x + 3^{-x})(3^y - 3^{-y}) \] ### Step 3: Expand the product Now we expand the product: \[ = \frac{1}{4} \left( 3^x \cdot 3^y - 3^x \cdot 3^{-y} + 3^{-x} \cdot 3^y - 3^{-x} \cdot 3^{-y} \right) \] \[ = \frac{1}{4} \left( 3^{x+y} - 3^{x-y} + 3^{-x+y} - 3^{-x-y} \right) \] ### Step 4: Calculate \( f(y) \cdot g(x) \) Next, we calculate \( f(y) \cdot g(x) \): \[ f(y) = \frac{1}{2} (3^y + 3^{-y}) \] \[ g(x) = \frac{1}{2} (3^x - 3^{-x}) \] \[ f(y) \cdot g(x) = \left(\frac{1}{2} (3^y + 3^{-y})\right) \cdot \left(\frac{1}{2} (3^x - 3^{-x})\right) \] \[ = \frac{1}{4} (3^y + 3^{-y})(3^x - 3^{-x}) \] ### Step 5: Expand this product Now we expand this product: \[ = \frac{1}{4} \left( 3^y \cdot 3^x - 3^y \cdot 3^{-x} + 3^{-y} \cdot 3^x - 3^{-y} \cdot 3^{-x} \right) \] \[ = \frac{1}{4} \left( 3^{y+x} - 3^{y-x} + 3^{-y+x} - 3^{-y-x} \right) \] ### Step 6: Add \( f(x) \cdot g(y) \) and \( f(y) \cdot g(x) \) Now we add the two results: \[ f(x) \cdot g(y) + f(y) \cdot g(x) = \frac{1}{4} \left( 3^{x+y} - 3^{x-y} + 3^{-x+y} - 3^{-x-y} \right) + \frac{1}{4} \left( 3^{y+x} - 3^{y-x} + 3^{-y+x} - 3^{-y-x} \right) \] ### Step 7: Simplify the expression Combining the two fractions: \[ = \frac{1}{4} \left( 2 \cdot 3^{x+y} - (3^{x-y} + 3^{y-x}) + (3^{-x+y} + 3^{-y+x}) - 2 \cdot 3^{-x-y} \right) \] \[ = \frac{1}{2} \cdot 3^{x+y} - \frac{1}{4} (3^{x-y} + 3^{y-x}) + \frac{1}{4} (3^{-x+y} + 3^{-y+x}) - \frac{1}{2} \cdot 3^{-x-y} \] ### Step 8: Recognize the pattern Notice that: \[ g(x+y) = \frac{1}{2} (3^{x+y} - 3^{-(x+y)}) \] Thus, we can conclude: \[ f(x) \cdot g(y) + f(y) \cdot g(x) = g(x+y) \] ### Final Result So, the final answer is: \[ f(x) \cdot g(y) + f(y) \cdot g(x) = g(x+y) \]
Promotional Banner

Topper's Solved these Questions

  • FUNCTIONS

    VMC MODULES ENGLISH|Exercise Level -2|47 Videos
  • FUNCTIONS

    VMC MODULES ENGLISH|Exercise Level -2 (Numerical Value Type for JEE Main)|14 Videos
  • FUNCTIONS

    VMC MODULES ENGLISH|Exercise JEE Main & Advanced|8 Videos
  • DIFFERENTIAL EQUATIONS

    VMC MODULES ENGLISH|Exercise JEE ADVANCE (ARCHIVE )|32 Videos
  • INTEGRAL CALCULUS - 2

    VMC MODULES ENGLISH|Exercise JEE Advanced (Archive)|103 Videos

Similar Questions

Explore conceptually related problems

If g(x) = 2x^(2) + 3x - 4 and g (f(x)) = 8x^(2) + 14 x + 1 then f (2) =

If f(x) = x^(2) and g(x) = (1)/(x^(3)) . Then the value of (f(x)+g(x))/(f(-x)-g(-x)) at x = 2 is

If f(x) = 3x + 1 and g(x) = x^(2) - 1 , then (f + g) (x) is equal to

If f(x)=log((1+x)/(1-x))a n dg(x)=((3x+x^3)/(1+3x^2)) , then f(g(x)) is equal to (a) f(3x) (b) {f(x)}^3 (c) 3f(x) (d) -f(x)

If f(x) = 7x + 9 and g(x) = 7x^(2) - 3 , then (f - g)(x) is equal to

If f(x)=2 In x+3 and g(x)= e^(x) , then f(g)(3))=

If f(x) = (3)/(x-2) and g(x) = sqrt(x + 1) , find the domain of f @ g .

If f(x) = sqrtx , g(x) = root(3)(x+1) , and h(x) = root(4)(x+2), " then "f(g(h(2)))=

If f (x) = cot ^(-1)((3x -x ^(3))/( 1- 3x ^(2)))and g (x) = cos ^(-1) ((1-x ^(2))/(1+x^(2))) then lim _(xtoa)(f(x) - f(a))/( g(x) -g (a)), 0 ltalt 1/2 is :

Let f(x)=((2008)^x+(2008)^(-x))/2,g(x)=((2008)^x-(2008)^(-x))/2 then prove that f(x+y)=f(x)f(y)+g(x)g(y)

VMC MODULES ENGLISH-FUNCTIONS-Level -1
  1. If f(x)=(x-1)/(x+1) then f(2x) is equal to

    Text Solution

    |

  2. Let f(x)=x amd g(x)=|x| for all x in R. Then the function phi(x)"satis...

    Text Solution

    |

  3. If f(x) = 1/2 (3^x + 3^(-x)), g(x) = 1/2 (3^x - 3^(-x)), then f(x) \ g...

    Text Solution

    |

  4. The domain of f(x)=(1)/(|sin x|+sin x|)" is:

    Text Solution

    |

  5. If f(x)="sin ln" (sqrt(4-x^(2)))/(1-x), then

    Text Solution

    |

  6. Statement 1 : The domain of the function f(x)=sqrt(x-[x])" is "R^(+) ...

    Text Solution

    |

  7. Statement 1 : f (x) = |x - 3| + |x - 4| + |x - 7| where 4 lt x lt 7 is...

    Text Solution

    |

  8. Statement 1 : The domain of the function f(x)=sqrt(x-[x])" is "R^(+) ...

    Text Solution

    |

  9. If f(x)=sin[pi^2]x+sin[-pi^2]x, where [x] denotes the greatest integer...

    Text Solution

    |

  10. The correct graph of y = (|log(2)2x|)/(log(2)2x) is

    Text Solution

    |

  11. The graph of y=x is

    Text Solution

    |

  12. The graph y = f (x) is as shown: The graph of y = f (–|x|) is:

    Text Solution

    |

  13. The graph of f(x) is given below. Then, (a) Graph of -f(x)+2 is

    Text Solution

    |

  14. Draw the following curves : y=||x^(2)|-2x-3| |x|+|y|=1

    Text Solution

    |

  15. The range of the function f(x) = (1)/(2-sin 3x) is

    Text Solution

    |

  16. Find the range of the function g(x)=(x^2+2x+3)/x.

    Text Solution

    |

  17. The range of the function f(x)=(x^(2)-2)/(x^(2)-3) is

    Text Solution

    |

  18. The function f(x)=log(10)((1+x)/(1-x)) satisfies the equation

    Text Solution

    |

  19. The graph of the function y=f(x) is symmetrical about the line x=2, th...

    Text Solution

    |

  20. The range of the function f(x) =[sinx+cosx] (where [x] denotes the gre...

    Text Solution

    |