Home
Class 12
MATHS
The range of the function f(x)=(x^(2)-2)...

The range of the function `f(x)=(x^(2)-2)/(x^(2)-3)` is

A

`(-oo,2/3] cup (1,oo)`

B

`y in R`

C

`y in (2/3, 1)`

D

None of these

Text Solution

AI Generated Solution

The correct Answer is:
To find the range of the function \( f(x) = \frac{x^2 - 2}{x^2 - 3} \), we will follow these steps: ### Step 1: Set the function equal to \( y \) We start by letting \( y = f(x) \): \[ y = \frac{x^2 - 2}{x^2 - 3} \] ### Step 2: Cross-multiply to eliminate the fraction Cross-multiplying gives us: \[ y(x^2 - 3) = x^2 - 2 \] This simplifies to: \[ yx^2 - 3y = x^2 - 2 \] ### Step 3: Rearrange the equation Rearranging the equation, we get: \[ yx^2 - x^2 = 3y - 2 \] Factoring out \( x^2 \) from the left side: \[ x^2(y - 1) = 3y - 2 \] ### Step 4: Solve for \( x^2 \) Now, we can express \( x^2 \) in terms of \( y \): \[ x^2 = \frac{3y - 2}{y - 1} \] ### Step 5: Determine the conditions for \( x^2 \) Since \( x^2 \) must be non-negative (i.e., \( x^2 \geq 0 \)), we need: \[ \frac{3y - 2}{y - 1} \geq 0 \] ### Step 6: Analyze the inequality To analyze this inequality, we will find the critical points by setting the numerator and denominator to zero: 1. **Numerator**: \( 3y - 2 = 0 \) gives \( y = \frac{2}{3} \) 2. **Denominator**: \( y - 1 = 0 \) gives \( y = 1 \) ### Step 7: Test intervals around the critical points We will test the sign of the expression \( \frac{3y - 2}{y - 1} \) in the intervals determined by the critical points: - **Interval 1**: \( (-\infty, \frac{2}{3}) \) - **Interval 2**: \( \left(\frac{2}{3}, 1\right) \) - **Interval 3**: \( (1, \infty) \) 1. **For \( y < \frac{2}{3} \)** (e.g., \( y = 0 \)): \[ \frac{3(0) - 2}{0 - 1} = \frac{-2}{-1} = 2 \quad (\text{positive}) \] 2. **For \( \frac{2}{3} < y < 1 \)** (e.g., \( y = 0.8 \)): \[ \frac{3(0.8) - 2}{0.8 - 1} = \frac{2.4 - 2}{-0.2} = \frac{0.4}{-0.2} = -2 \quad (\text{negative}) \] 3. **For \( y > 1 \)** (e.g., \( y = 2 \)): \[ \frac{3(2) - 2}{2 - 1} = \frac{6 - 2}{1} = 4 \quad (\text{positive}) \] ### Step 8: Compile the results From our analysis, the expression \( \frac{3y - 2}{y - 1} \geq 0 \) holds in the intervals: - \( (-\infty, \frac{2}{3}] \) (including \( \frac{2}{3} \)) - \( (1, \infty) \) ### Step 9: Write the final range Thus, the range of the function \( f(x) \) is: \[ \text{Range} = \left(-\infty, \frac{2}{3}\right] \cup (1, \infty) \]
Promotional Banner

Topper's Solved these Questions

  • FUNCTIONS

    VMC MODULES ENGLISH|Exercise Level -2|47 Videos
  • FUNCTIONS

    VMC MODULES ENGLISH|Exercise Level -2 (Numerical Value Type for JEE Main)|14 Videos
  • FUNCTIONS

    VMC MODULES ENGLISH|Exercise JEE Main & Advanced|8 Videos
  • DIFFERENTIAL EQUATIONS

    VMC MODULES ENGLISH|Exercise JEE ADVANCE (ARCHIVE )|32 Videos
  • INTEGRAL CALCULUS - 2

    VMC MODULES ENGLISH|Exercise JEE Advanced (Archive)|103 Videos

Similar Questions

Explore conceptually related problems

Range of the function f(x)=(x^(2)-2)/(2x-3) is

Range of the function f(x)=(x^2-3x+2)/(x^2+x-6) is

Range of the function f(x)=(x-2)/(x^2-4x+3) is

The range of the function f(x) = (x^2-9)/(x-3); x!=3 is

The range of the function f(x)=x^2+1/(x^2+1) is

The range of the function f(x)=x^2+1/(x^2+1) is

The range of the function f(x)=(5)/(3-x^(2)) is

Range of the function f(x)=((x-2)^2)/((x-1)(x-3)) is

The range of the function f(x)=5-4x-x^(2) is

The range of the function f(x)=(x+1)/(x-2) is

VMC MODULES ENGLISH-FUNCTIONS-Level -1
  1. The range of the function f(x) = (1)/(2-sin 3x) is

    Text Solution

    |

  2. Find the range of the function g(x)=(x^2+2x+3)/x.

    Text Solution

    |

  3. The range of the function f(x)=(x^(2)-2)/(x^(2)-3) is

    Text Solution

    |

  4. The function f(x)=log(10)((1+x)/(1-x)) satisfies the equation

    Text Solution

    |

  5. The graph of the function y=f(x) is symmetrical about the line x=2, th...

    Text Solution

    |

  6. The range of the function f(x) =[sinx+cosx] (where [x] denotes the gre...

    Text Solution

    |

  7. Find the range of the function f(x)=3 sin (sqrt((pi^(2))/(16)-x^(2))).

    Text Solution

    |

  8. f(1)=1, n ge 1 f(n+1)=2f(n)+1 then f(n)=

    Text Solution

    |

  9. The function f(x)=cos(log(x+sqrt(x^2+1))) is :

    Text Solution

    |

  10. f(x)=(sin x^(7)) e^(x^(5)). Sgn( x^(9)) is:

    Text Solution

    |

  11. Which of the following functions is an odd function:

    Text Solution

    |

  12. If f(x)=sin^2x+sin^2(x+pi/3)+cosxcos(x+pi/3)a n dg(5/4=1, then (gof)(x...

    Text Solution

    |

  13. The period of the fuction f(x)=sin""((pix)/(n!))+ cos((pix)/((n+1...

    Text Solution

    |

  14. The period of the function f(x)=(sin x+sin 2x+sin 4x+sin 5x)/(cos x+co...

    Text Solution

    |

  15. Statement 1: The function f (x) = sin x is symmetric about the line x ...

    Text Solution

    |

  16. Period of sinx + cosx:

    Text Solution

    |

  17. Which of the following functions is non-periodic?

    Text Solution

    |

  18. If f(x)=(1)/((1-x)),g(x)=f{f(x)}andh(x)=f[f{f(x)}]. Then the value of ...

    Text Solution

    |

  19. The period of function (|sin x|+|cos x|)/(|sin x-cos x|+|sin x+cos x|)...

    Text Solution

    |

  20. Statement-1: Function f(x)=sin(x+3 sin x) is periodic . Statement-2...

    Text Solution

    |