Home
Class 12
MATHS
The function f(x)=log(10)((1+x)/(1-x)) s...

The function `f(x)=log_(10)((1+x)/(1-x))` satisfies the equation

A

`f(x+2)-2f(x+1)+f(x)=0`

B

`f(x_(1))f(x_(2))=f(x_(1)+x_(2))`

C

`f(x_(1))+f(x_(2))=f(x_(1)+x_(3))/(1+x_(1)x_(3))`

D

`f(x_(1))+f(x_(2))=f(x_(1)+x_(2))/(1+x_(1)x_(2))`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to show that the function \( f(x) = \log_{10} \left( \frac{1+x}{1-x} \right) \) satisfies a certain equation. The equation we want to prove is: \[ f(x_1 + x_2) = f(x_1) + f(x_2) \] for \( x_1 \) and \( x_2 \) such that \( x_1 + x_2 < 1 \). ### Step-by-Step Solution: 1. **Define the function**: \[ f(x) = \log_{10} \left( \frac{1+x}{1-x} \right) \] 2. **Calculate \( f(x_1 + x_2) \)**: We need to find \( f(x_1 + x_2) \): \[ f(x_1 + x_2) = \log_{10} \left( \frac{1 + (x_1 + x_2)}{1 - (x_1 + x_2)} \right) \] This simplifies to: \[ f(x_1 + x_2) = \log_{10} \left( \frac{1 + x_1 + x_2}{1 - x_1 - x_2} \right) \] 3. **Calculate \( f(x_1) + f(x_2) \)**: Now calculate \( f(x_1) \) and \( f(x_2) \): \[ f(x_1) = \log_{10} \left( \frac{1+x_1}{1-x_1} \right) \] \[ f(x_2) = \log_{10} \left( \frac{1+x_2}{1-x_2} \right) \] Adding these: \[ f(x_1) + f(x_2) = \log_{10} \left( \frac{1+x_1}{1-x_1} \right) + \log_{10} \left( \frac{1+x_2}{1-x_2} \right) \] Using the property of logarithms \( \log(a) + \log(b) = \log(ab) \): \[ f(x_1) + f(x_2) = \log_{10} \left( \frac{1+x_1}{1-x_1} \cdot \frac{1+x_2}{1-x_2} \right) \] 4. **Combine the fractions**: Now we can combine the fractions: \[ f(x_1) + f(x_2) = \log_{10} \left( \frac{(1+x_1)(1+x_2)}{(1-x_1)(1-x_2)} \right) \] 5. **Expand the numerator and denominator**: Expanding both: - Numerator: \( (1+x_1)(1+x_2) = 1 + x_1 + x_2 + x_1 x_2 \) - Denominator: \( (1-x_1)(1-x_2) = 1 - x_1 - x_2 + x_1 x_2 \) So we have: \[ f(x_1) + f(x_2) = \log_{10} \left( \frac{1 + x_1 + x_2 + x_1 x_2}{1 - x_1 - x_2 + x_1 x_2} \right) \] 6. **Conclusion**: Since both expressions for \( f(x_1 + x_2) \) and \( f(x_1) + f(x_2) \) are equal, we conclude that: \[ f(x_1 + x_2) = f(x_1) + f(x_2) \] ### Final Result: Thus, the function \( f(x) = \log_{10} \left( \frac{1+x}{1-x} \right) \) satisfies the equation \( f(x_1 + x_2) = f(x_1) + f(x_2) \).
Promotional Banner

Topper's Solved these Questions

  • FUNCTIONS

    VMC MODULES ENGLISH|Exercise Level -2|47 Videos
  • FUNCTIONS

    VMC MODULES ENGLISH|Exercise Level -2 (Numerical Value Type for JEE Main)|14 Videos
  • FUNCTIONS

    VMC MODULES ENGLISH|Exercise JEE Main & Advanced|8 Videos
  • DIFFERENTIAL EQUATIONS

    VMC MODULES ENGLISH|Exercise JEE ADVANCE (ARCHIVE )|32 Videos
  • INTEGRAL CALCULUS - 2

    VMC MODULES ENGLISH|Exercise JEE Advanced (Archive)|103 Videos

Similar Questions

Explore conceptually related problems

The function f(x)=log_(10)(x+sqrt(x^(2))+1) is

The function f(x)=log (1+x)-(2+x) is increasing in

Find the values of x which the function f(x)=sqrt(log_(1//2)((x-1)/(x+5)) is defined.

The function f(x) = sec[log(x + sqrt(1+x^2))] is

The function f(x) = sec[log(x + sqrt(1+x^2))] is

The function f(x)=sin(log(x+ sqrt(x^2+1))) ​

The function f(x) satisfies the equation f(x + 1) + f(x-1) = sqrt3 f(x) . then the period of f(x) is

The range of the function f(x)=sin{log_(10)((sqrt(4-x^(2)))/(1-x))} ,is

The function f(x)=cos(log(x+sqrt(x^2+1))) is :

Find domain of f(x)=log_(10)(1+x^(3)) .

VMC MODULES ENGLISH-FUNCTIONS-Level -1
  1. Find the range of the function g(x)=(x^2+2x+3)/x.

    Text Solution

    |

  2. The range of the function f(x)=(x^(2)-2)/(x^(2)-3) is

    Text Solution

    |

  3. The function f(x)=log(10)((1+x)/(1-x)) satisfies the equation

    Text Solution

    |

  4. The graph of the function y=f(x) is symmetrical about the line x=2, th...

    Text Solution

    |

  5. The range of the function f(x) =[sinx+cosx] (where [x] denotes the gre...

    Text Solution

    |

  6. Find the range of the function f(x)=3 sin (sqrt((pi^(2))/(16)-x^(2))).

    Text Solution

    |

  7. f(1)=1, n ge 1 f(n+1)=2f(n)+1 then f(n)=

    Text Solution

    |

  8. The function f(x)=cos(log(x+sqrt(x^2+1))) is :

    Text Solution

    |

  9. f(x)=(sin x^(7)) e^(x^(5)). Sgn( x^(9)) is:

    Text Solution

    |

  10. Which of the following functions is an odd function:

    Text Solution

    |

  11. If f(x)=sin^2x+sin^2(x+pi/3)+cosxcos(x+pi/3)a n dg(5/4=1, then (gof)(x...

    Text Solution

    |

  12. The period of the fuction f(x)=sin""((pix)/(n!))+ cos((pix)/((n+1...

    Text Solution

    |

  13. The period of the function f(x)=(sin x+sin 2x+sin 4x+sin 5x)/(cos x+co...

    Text Solution

    |

  14. Statement 1: The function f (x) = sin x is symmetric about the line x ...

    Text Solution

    |

  15. Period of sinx + cosx:

    Text Solution

    |

  16. Which of the following functions is non-periodic?

    Text Solution

    |

  17. If f(x)=(1)/((1-x)),g(x)=f{f(x)}andh(x)=f[f{f(x)}]. Then the value of ...

    Text Solution

    |

  18. The period of function (|sin x|+|cos x|)/(|sin x-cos x|+|sin x+cos x|)...

    Text Solution

    |

  19. Statement-1: Function f(x)=sin(x+3 sin x) is periodic . Statement-2...

    Text Solution

    |

  20. Period of f(x) = sin^4 x + cos^4 x

    Text Solution

    |