Home
Class 12
MATHS
The period of the function f(x)=(sin x+s...

The period of the function `f(x)=(sin x+sin 2x+sin 4x+sin 5x)/(cos x+cos 2x+cos 4x+cos 5x)` is :

A

`pi/3`

B

`pi/4`

C

`pi`

D

None of these

Text Solution

AI Generated Solution

The correct Answer is:
To find the period of the function \[ f(x) = \frac{\sin x + \sin 2x + \sin 4x + \sin 5x}{\cos x + \cos 2x + \cos 4x + \cos 5x}, \] we will follow these steps: ### Step 1: Rearranging the Function We can rearrange the numerator and denominator: \[ f(x) = \frac{\sin x + \sin 5x + \sin 2x + \sin 4x}{\cos x + \cos 5x + \cos 2x + \cos 4x}. \] **Hint:** Group the sine and cosine terms for easier manipulation. ### Step 2: Applying Sum-to-Product Formulas Using the sum-to-product identities: - \(\sin A + \sin B = 2 \sin\left(\frac{A+B}{2}\right) \cos\left(\frac{A-B}{2}\right)\) - \(\cos A + \cos B = 2 \cos\left(\frac{A+B}{2}\right) \cos\left(\frac{A-B}{2}\right)\) We apply these formulas to the numerator and denominator. **Hint:** Remember to apply the formulas systematically to pairs of sine and cosine terms. ### Step 3: Simplifying the Numerator For the numerator: 1. Combine \(\sin x + \sin 5x\): \[ \sin x + \sin 5x = 2 \sin\left(\frac{6x}{2}\right) \cos\left(\frac{-4x}{2}\right) = 2 \sin(3x) \cos(2x). \] 2. Combine \(\sin 2x + \sin 4x\): \[ \sin 2x + \sin 4x = 2 \sin\left(\frac{6x}{2}\right) \cos\left(\frac{-2x}{2}\right) = 2 \sin(3x) \cos(x). \] Thus, the numerator becomes: \[ 2 \sin(3x) \left(\cos(2x) + \cos(x)\right). \] **Hint:** Keep track of the coefficients and ensure you apply the identities correctly. ### Step 4: Simplifying the Denominator For the denominator: 1. Combine \(\cos x + \cos 5x\): \[ \cos x + \cos 5x = 2 \cos\left(\frac{6x}{2}\right) \cos\left(\frac{-4x}{2}\right) = 2 \cos(3x) \cos(2x). \] 2. Combine \(\cos 2x + \cos 4x\): \[ \cos 2x + \cos 4x = 2 \cos\left(\frac{6x}{2}\right) \cos\left(\frac{-2x}{2}\right) = 2 \cos(3x) \cos(x). \] Thus, the denominator becomes: \[ 2 \cos(3x) \left(\cos(2x) + \cos(x)\right). \] **Hint:** Use the same sum-to-product identities for the cosine terms. ### Step 5: Cancelling Common Terms Now we can simplify \(f(x)\): \[ f(x) = \frac{\sin(3x) \left(\cos(2x) + \cos(x)\right)}{\cos(3x) \left(\cos(2x) + \cos(x)\right)}. \] Assuming \(\cos(2x) + \cos(x) \neq 0\), we can cancel this term: \[ f(x) = \tan(3x). \] **Hint:** Ensure that the cancellation is valid by checking the conditions under which the denominator is not zero. ### Step 6: Finding the Period The period of the function \(f(x) = \tan(3x)\) is given by: \[ \text{Period} = \frac{\pi}{|3|} = \frac{\pi}{3}. \] **Hint:** Remember that the period of the tangent function is \(\pi\) divided by the coefficient of \(x\). ### Conclusion Thus, the period of the function \(f(x)\) is \[ \boxed{\frac{\pi}{3}}. \]
Promotional Banner

Topper's Solved these Questions

  • FUNCTIONS

    VMC MODULES ENGLISH|Exercise Level -2|47 Videos
  • FUNCTIONS

    VMC MODULES ENGLISH|Exercise Level -2 (Numerical Value Type for JEE Main)|14 Videos
  • FUNCTIONS

    VMC MODULES ENGLISH|Exercise JEE Main & Advanced|8 Videos
  • DIFFERENTIAL EQUATIONS

    VMC MODULES ENGLISH|Exercise JEE ADVANCE (ARCHIVE )|32 Videos
  • INTEGRAL CALCULUS - 2

    VMC MODULES ENGLISH|Exercise JEE Advanced (Archive)|103 Videos

Similar Questions

Explore conceptually related problems

The period of the function f(x)=|sin 3x|+| cos 3x| , is

sin 10 x = 2 sin 5x cos 5x

Evaluate int sin x cos x cos2x cos 4x cos 8x dx

Solve sin x-3 sin 2x + sin 3x = cos x -3 cos 2x + cos 3x .

The period of function (|sin x|+|cos x|)/(|sin x-cos x|+|sin x+cos x|) is :

show that sin x+sin 3x +sin 5x +sin 7x =4 sin 4x cos 2x cos x .

Prove that: (sin 3 x +sin x) sin x + (cos 3x - cos x) cos x = 0

(sin 7x + sin 3x )/(cos 7x + cos 3x ) = tan 5x.

The function f(x) given by f(x)=(sin 8x cos x-sin6x cos 3x)/(cos x cos2x-sin3x sin 4x) , is

The period of the function |sin^3(x/2)|+|cos^5(x/5)| is

VMC MODULES ENGLISH-FUNCTIONS-Level -1
  1. If f(x)=sin^2x+sin^2(x+pi/3)+cosxcos(x+pi/3)a n dg(5/4=1, then (gof)(x...

    Text Solution

    |

  2. The period of the fuction f(x)=sin""((pix)/(n!))+ cos((pix)/((n+1...

    Text Solution

    |

  3. The period of the function f(x)=(sin x+sin 2x+sin 4x+sin 5x)/(cos x+co...

    Text Solution

    |

  4. Statement 1: The function f (x) = sin x is symmetric about the line x ...

    Text Solution

    |

  5. Period of sinx + cosx:

    Text Solution

    |

  6. Which of the following functions is non-periodic?

    Text Solution

    |

  7. If f(x)=(1)/((1-x)),g(x)=f{f(x)}andh(x)=f[f{f(x)}]. Then the value of ...

    Text Solution

    |

  8. The period of function (|sin x|+|cos x|)/(|sin x-cos x|+|sin x+cos x|)...

    Text Solution

    |

  9. Statement-1: Function f(x)=sin(x+3 sin x) is periodic . Statement-2...

    Text Solution

    |

  10. Period of f(x) = sin^4 x + cos^4 x

    Text Solution

    |

  11. If f(x)=sin (sqrt([lambda])x) is a function with period pi , [ ] wher...

    Text Solution

    |

  12. If F(x)=(sinpi[x])/({x}) then F(x) is (where {.} denotes fractional pa...

    Text Solution

    |

  13. If 2f (x-1)-f((1-x)/x)=x , then f(x) is:

    Text Solution

    |

  14. Suppose f is a real valued function satisfying f(x+f(x))=4f(x) and f(1...

    Text Solution

    |

  15. If h(x)=log(10)x, then the value of underset(n=1)overset(89)sumh"("tan...

    Text Solution

    |

  16. If f(x)+2f((1)/(x))=3x,x ne 0, and S={x in R: f(x)=f(-x)}, then S

    Text Solution

    |

  17. Let h(x) = min {x, x^2}, for every real number of X.

    Text Solution

    |

  18. The function f(x) = "max"{(1-x), (1+x), 2}, x in (-oo, oo) is

    Text Solution

    |

  19. Let a function f (x)= be such that f(x)=||x^(2)-3|-2|. Equation has...

    Text Solution

    |

  20. Let a function f (x)= be such that f(x)=||x^(2)-3|-2|. Equation f (...

    Text Solution

    |