Home
Class 12
MATHS
The period of function (|sin x|+|cos x|)...

The period of function `(|sin x|+|cos x|)/(|sin x-cos x|+|sin x+cos x|)` is :

A

`pi`

B

`pi/2`

C

`2pi`

D

`(2pi)/(3)`

Text Solution

AI Generated Solution

The correct Answer is:
To find the period of the function \( f(x) = \frac{|\sin x| + |\cos x|}{|\sin x - \cos x| + |\sin x + \cos x|} \), we will analyze both the numerator and the denominator separately. ### Step 1: Analyze the Numerator The numerator is \( |\sin x| + |\cos x| \). - The function \( |\sin x| \) has a period of \( \pi \). - The function \( |\cos x| \) also has a period of \( \pi \). However, since both functions are combined in a sum, we need to find the least common period. The period of \( |\sin x| + |\cos x| \) is \( \frac{\pi}{2} \). ### Step 2: Analyze the Denominator The denominator is \( |\sin x - \cos x| + |\sin x + \cos x| \). 1. **For \( |\sin x - \cos x| \)**: - We can rewrite it as \( |\sqrt{2} \left( \frac{1}{\sqrt{2}} \sin x - \frac{1}{\sqrt{2}} \cos x \right)| \). - This can be expressed using the sine function: \[ |\sin x - \cos x| = \sqrt{2} |\sin(x - \frac{\pi}{4})| \] - The period of \( |\sin(x - \frac{\pi}{4})| \) is \( \pi \). 2. **For \( |\sin x + \cos x| \)**: - Similarly, we can rewrite it as \( |\sqrt{2} \left( \frac{1}{\sqrt{2}} \sin x + \frac{1}{\sqrt{2}} \cos x \right)| \). - This can also be expressed using the sine function: \[ |\sin x + \cos x| = \sqrt{2} |\sin(x + \frac{\pi}{4})| \] - The period of \( |\sin(x + \frac{\pi}{4})| \) is also \( \pi \). ### Step 3: Combine the Denominator The denominator \( |\sin x - \cos x| + |\sin x + \cos x| \) combines two functions, both having a period of \( \pi \). Therefore, the period of the denominator is also \( \pi \). ### Step 4: Determine the Overall Period Now we have: - Period of the numerator: \( \frac{\pi}{2} \) - Period of the denominator: \( \pi \) To find the overall period of the function \( f(x) \), we take the least common multiple (LCM) of the two periods: \[ \text{LCM}\left(\frac{\pi}{2}, \pi\right) = \pi \] ### Conclusion Thus, the period of the function \( f(x) = \frac{|\sin x| + |\cos x|}{|\sin x - \cos x| + |\sin x + \cos x|} \) is \( \pi \). ### Final Answer The period of the function is \( \pi \). ---
Promotional Banner

Topper's Solved these Questions

  • FUNCTIONS

    VMC MODULES ENGLISH|Exercise Level -2|47 Videos
  • FUNCTIONS

    VMC MODULES ENGLISH|Exercise Level -2 (Numerical Value Type for JEE Main)|14 Videos
  • FUNCTIONS

    VMC MODULES ENGLISH|Exercise JEE Main & Advanced|8 Videos
  • DIFFERENTIAL EQUATIONS

    VMC MODULES ENGLISH|Exercise JEE ADVANCE (ARCHIVE )|32 Videos
  • INTEGRAL CALCULUS - 2

    VMC MODULES ENGLISH|Exercise JEE Advanced (Archive)|103 Videos

Similar Questions

Explore conceptually related problems

Find the period of (a) (|sin4x|+|cos 4x|)/(|sin 4x-cos 4x|+|sin 4x+cos 4x|) (b) f(x)="sin"(pi x)/(n!)-"cos"(pi x)/((n+1)!) (c ) f(x)=sin x +"tan"(x)/(2)+"sin"(x)/(2^(2))+"tan"(x)/(2^(3))+ ... +"sin"(x)/(2^(n-1))+"tan"(x)/(2^(n))

Find the period of (|sin4x|+|cos4x|)/(|sin4x-cos4 x|+|sin4x+cos4x|)

The period of the function f(x)=|sin 3x|+| cos 3x| , is

sin x sin (cos x)

int(sin x+x cos x)/(x sin x)dx

The period of the function |sin^3(x/2)|+|cos^5(x/5)| is

int sin x cos(cos x)dx

(1 + sin 2x + cos 2x )/( cos x + sin x ) = 2 cos x

The range of the function f(x)=3|sin x|-2|cos x| is :

The period of the function f(x)=(sin x+sin 2x+sin 4x+sin 5x)/(cos x+cos 2x+cos 4x+cos 5x) is :

VMC MODULES ENGLISH-FUNCTIONS-Level -1
  1. Which of the following functions is non-periodic?

    Text Solution

    |

  2. If f(x)=(1)/((1-x)),g(x)=f{f(x)}andh(x)=f[f{f(x)}]. Then the value of ...

    Text Solution

    |

  3. The period of function (|sin x|+|cos x|)/(|sin x-cos x|+|sin x+cos x|)...

    Text Solution

    |

  4. Statement-1: Function f(x)=sin(x+3 sin x) is periodic . Statement-2...

    Text Solution

    |

  5. Period of f(x) = sin^4 x + cos^4 x

    Text Solution

    |

  6. If f(x)=sin (sqrt([lambda])x) is a function with period pi , [ ] wher...

    Text Solution

    |

  7. If F(x)=(sinpi[x])/({x}) then F(x) is (where {.} denotes fractional pa...

    Text Solution

    |

  8. If 2f (x-1)-f((1-x)/x)=x , then f(x) is:

    Text Solution

    |

  9. Suppose f is a real valued function satisfying f(x+f(x))=4f(x) and f(1...

    Text Solution

    |

  10. If h(x)=log(10)x, then the value of underset(n=1)overset(89)sumh"("tan...

    Text Solution

    |

  11. If f(x)+2f((1)/(x))=3x,x ne 0, and S={x in R: f(x)=f(-x)}, then S

    Text Solution

    |

  12. Let h(x) = min {x, x^2}, for every real number of X.

    Text Solution

    |

  13. The function f(x) = "max"{(1-x), (1+x), 2}, x in (-oo, oo) is

    Text Solution

    |

  14. Let a function f (x)= be such that f(x)=||x^(2)-3|-2|. Equation has...

    Text Solution

    |

  15. Let a function f (x)= be such that f(x)=||x^(2)-3|-2|. Equation f (...

    Text Solution

    |

  16. Let a function f (x)= be such that f(x)=||x^(2)-3|-2|. Equation f (...

    Text Solution

    |

  17. The number of roots of the equation log(3sqrtx)x + log(3x) sqrtx = 0 ...

    Text Solution

    |

  18. If x in [0,2pi]" then "y(1)=(sin x)/(|sin x|), y(2)=(|cos x|)/(cos x...

    Text Solution

    |

  19. The range of the function f(x)=sin{log(10)((sqrt(4-x^(2)))/(1-x))} ,is

    Text Solution

    |

  20. If f(x)+2f(1-x)=x^2+2AA x in R, then f(x) given as

    Text Solution

    |