Home
Class 12
MATHS
If x in [0,2pi]" then "y(1)=(sin x)/(|...

If `x in [0,2pi]" then "y_(1)=(sin x)/(|sin x|), y_(2)=(|cos x|)/(cos x)` are identical functions for ` x in :`
I. `(0,pi/2)" "II. (pi/2, pi)," "III. (pi,(3pi)/(2))," "IV. ((3pi)/(2),2pi)`

A

I,II

B

I,III

C

II,III

D

I,IV

Text Solution

AI Generated Solution

The correct Answer is:
To determine where the functions \( y_1 = \frac{\sin x}{|\sin x|} \) and \( y_2 = \frac{|\cos x|}{\cos x} \) are identical, we need to analyze both functions over the intervals provided. ### Step 1: Analyze \( y_1 = \frac{\sin x}{|\sin x|} \) - **For \( x \in (0, \frac{\pi}{2}) \)**: - \( \sin x > 0 \) - Therefore, \( y_1 = \frac{\sin x}{\sin x} = 1 \) - **For \( x \in (\frac{\pi}{2}, \pi) \)**: - \( \sin x > 0 \) - Therefore, \( y_1 = \frac{\sin x}{\sin x} = 1 \) - **For \( x \in (\pi, \frac{3\pi}{2}) \)**: - \( \sin x < 0 \) - Therefore, \( y_1 = \frac{\sin x}{|\sin x|} = -1 \) - **For \( x \in (\frac{3\pi}{2}, 2\pi) \)**: - \( \sin x < 0 \) - Therefore, \( y_1 = \frac{\sin x}{|\sin x|} = -1 \) ### Step 2: Analyze \( y_2 = \frac{|\cos x|}{\cos x} \) - **For \( x \in (0, \frac{\pi}{2}) \)**: - \( \cos x > 0 \) - Therefore, \( y_2 = \frac{\cos x}{\cos x} = 1 \) - **For \( x \in (\frac{\pi}{2}, \pi) \)**: - \( \cos x < 0 \) - Therefore, \( y_2 = \frac{-\cos x}{\cos x} = -1 \) - **For \( x \in (\pi, \frac{3\pi}{2}) \)**: - \( \cos x < 0 \) - Therefore, \( y_2 = \frac{-\cos x}{\cos x} = -1 \) - **For \( x \in (\frac{3\pi}{2}, 2\pi) \)**: - \( \cos x > 0 \) - Therefore, \( y_2 = \frac{\cos x}{\cos x} = 1 \) ### Step 3: Compare the Functions Now we compare \( y_1 \) and \( y_2 \) in each interval: 1. **Interval \( (0, \frac{\pi}{2}) \)**: - \( y_1 = 1 \) - \( y_2 = 1 \) - **Identical**. 2. **Interval \( (\frac{\pi}{2}, \pi) \)**: - \( y_1 = 1 \) - \( y_2 = -1 \) - **Not identical**. 3. **Interval \( (\pi, \frac{3\pi}{2}) \)**: - \( y_1 = -1 \) - \( y_2 = -1 \) - **Identical**. 4. **Interval \( (\frac{3\pi}{2}, 2\pi) \)**: - \( y_1 = -1 \) - \( y_2 = 1 \) - **Not identical**. ### Conclusion The functions \( y_1 \) and \( y_2 \) are identical in the intervals: - I. \( (0, \frac{\pi}{2}) \) - III. \( (\pi, \frac{3\pi}{2}) \) Thus, the correct options are I and III.
Promotional Banner

Topper's Solved these Questions

  • FUNCTIONS

    VMC MODULES ENGLISH|Exercise Level -2|47 Videos
  • FUNCTIONS

    VMC MODULES ENGLISH|Exercise Level -2 (Numerical Value Type for JEE Main)|14 Videos
  • FUNCTIONS

    VMC MODULES ENGLISH|Exercise JEE Main & Advanced|8 Videos
  • DIFFERENTIAL EQUATIONS

    VMC MODULES ENGLISH|Exercise JEE ADVANCE (ARCHIVE )|32 Videos
  • INTEGRAL CALCULUS - 2

    VMC MODULES ENGLISH|Exercise JEE Advanced (Archive)|103 Videos

Similar Questions

Explore conceptually related problems

f(x)=(s i nx)/(sqrt(1+tan^2x))+(cos x)/(sqrt(1+cot^2x)) is constant in which of following interval a. \ (0,\ pi/2) b. (pi/2,\ pi) c. (pi,\ (3pi)/2) d. ((3pi)/2,2pi)

Prove that the function f given by f(x) = log | cos x|" is decreasing on "(0,pi/2)" and increasing on "((3pi)/2,2pi) .

Statement I y = tan^(-1) ( tan x) " and " y = cos^(-1) ( cos x) " does not have nay solution , if " x in (pi/2, (3pi)/2) Statement II y = tan^(-1)( tan x) = x - pi, x in (pi/2, (3pi)/2) " and " y = cos^(-1) ( cos x) = {{:(2pi - x", " x in [pi, (3pi)/2]),(" x, " x in [pi/2,pi]):}

If cos x (dy)/(dx)-y sin x = 6x, (0 lt x lt (pi)/(2)) and y((pi)/(3))=0 , then y((pi)/(6)) is equal to :-

int_(-pi//2)^(pi//2) sin^(2)x cos^(2) x(sin xcos x)dx=

Find the range of f(x) = (sin^(-1) x)^(2) + 2pi cos^(-1) x + pi^(2)

Find (dy)/(dx)" for "y=sin^(-1) (cos x), x in (0, pi)cup (pi, 2pi).

The value of "cos"((3pi)/2+x)."cos"(2pi+x)["cot"((3pi)/(2)-x)+"cot"(2pi+x)] is

Solve cos 2x=|sin x|, x in (-pi/2, pi) .

Solve cos 2x=|sin x|, x in (-pi/2, pi) .

VMC MODULES ENGLISH-FUNCTIONS-Level -1
  1. If f(x)=(1)/((1-x)),g(x)=f{f(x)}andh(x)=f[f{f(x)}]. Then the value of ...

    Text Solution

    |

  2. The period of function (|sin x|+|cos x|)/(|sin x-cos x|+|sin x+cos x|)...

    Text Solution

    |

  3. Statement-1: Function f(x)=sin(x+3 sin x) is periodic . Statement-2...

    Text Solution

    |

  4. Period of f(x) = sin^4 x + cos^4 x

    Text Solution

    |

  5. If f(x)=sin (sqrt([lambda])x) is a function with period pi , [ ] wher...

    Text Solution

    |

  6. If F(x)=(sinpi[x])/({x}) then F(x) is (where {.} denotes fractional pa...

    Text Solution

    |

  7. If 2f (x-1)-f((1-x)/x)=x , then f(x) is:

    Text Solution

    |

  8. Suppose f is a real valued function satisfying f(x+f(x))=4f(x) and f(1...

    Text Solution

    |

  9. If h(x)=log(10)x, then the value of underset(n=1)overset(89)sumh"("tan...

    Text Solution

    |

  10. If f(x)+2f((1)/(x))=3x,x ne 0, and S={x in R: f(x)=f(-x)}, then S

    Text Solution

    |

  11. Let h(x) = min {x, x^2}, for every real number of X.

    Text Solution

    |

  12. The function f(x) = "max"{(1-x), (1+x), 2}, x in (-oo, oo) is

    Text Solution

    |

  13. Let a function f (x)= be such that f(x)=||x^(2)-3|-2|. Equation has...

    Text Solution

    |

  14. Let a function f (x)= be such that f(x)=||x^(2)-3|-2|. Equation f (...

    Text Solution

    |

  15. Let a function f (x)= be such that f(x)=||x^(2)-3|-2|. Equation f (...

    Text Solution

    |

  16. The number of roots of the equation log(3sqrtx)x + log(3x) sqrtx = 0 ...

    Text Solution

    |

  17. If x in [0,2pi]" then "y(1)=(sin x)/(|sin x|), y(2)=(|cos x|)/(cos x...

    Text Solution

    |

  18. The range of the function f(x)=sin{log(10)((sqrt(4-x^(2)))/(1-x))} ,is

    Text Solution

    |

  19. If f(x)+2f(1-x)=x^2+2AA x in R, then f(x) given as

    Text Solution

    |

  20. Let f:R to R be a function defined by f(x)=(|x|^(3)+|x|)/(1+x^(2)), t...

    Text Solution

    |